Режим холостого хода
Режим холосто́го хо́да в электронике — состояние двухполюсника, при котором к его выводам не подключено никакой нагрузки (то есть, другими словами, сопротивление нагрузки бесконечно).
Часто вместо термина Режим холостого хода используется аббревиатура: Режим ХХ или просто ХХ.
Применение
Рассмотрение режима холостого хода применяется при анализе электрических цепей (смотри, например, внутреннее сопротивление). В режиме холостого хода напряжение на двухполюснике равно напряжению генератора напряжения в эквивалентной схеме двухполюсника.
Смотри также
Wikimedia Foundation . 2010 .
- Режим полного соответствия
- Режимы аварийного прекращения полета МТКК Спэйс Шаттл
Смотреть что такое «Режим холостого хода» в других словарях:
- режим холостого хода — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN idling conditionsno load conditionsopen circuit conditionsno load… … Справочник технического переводчика
- режим холостого хода — 3.24 режим холостого хода: Движение пожарного ствола без подачи огнетушащего вещества. Источник: ГОСТ Р 53326 2009: Техника пожарная. Установки пожаротушения роботизированные. Общие технические треб … Словарь-справочник терминов нормативно-технической документации
- режим холостого хода — tuščioji veika statusas T sritis automatika atitikmenys: angl. idling; idling conditions vok. Leerlauf, m; Leerlaufbetrieb, m rus. режим холостого хода, m; холостой ход, m pranc. marche à vide, f … Automatikos terminų žodynas
- режим холостого хода — tuščioji veika statusas T sritis fizika atitikmenys: angl. idle running; light running; no load conditions vok. Leergang, m; Leerlauf, m; Leerlaufzustand, m rus. режим холостого хода, m; холостой ход, m pranc. marche à vide, f; régime à vide, m;… … Fizikos terminų žodynas
- Режим холостого хода (электроника) — Режим холостого хода в электронике состояние двухполюсника, при котором к его выводам не подключено никакой нагрузки (то есть, другими словами, сопротивление нагрузки бесконечно). Часто вместо термина Режим холостого хода используется… … Википедия
- режим холостого хода фотоэлектрического полупроводникового приемника излучения — режим холостого хода ФЭПП Режим работы фотоэлектрического полупроводникового приемника излучения, при котором выходное динамическое сопротивление ФЭПП пренебрежимо мало по сравнению с сопротивлением нагрузки. [ГОСТ 21934 83] Тематики приемники… … Справочник технического переводчика
- Режим холостого хода электротехнического изделия — 99 Источник: ГОСТ 18311 80: Изделия электротехнические. Термины и определения основных понятий оригинал документа … Словарь-справочник терминов нормативно-технической документации
- режим холостого хода трансформатора — х. х. трансформатора Режим работы при питании одной из обмоток трансформатора от источника с переменным напряжением и других обмотках, не замкнутых на внешние цепи. Примечание. Если нет специальной оговорки, то предполагается, что напряжение… … Справочник технического переводчика
- режим холостого хода вращающегося электродвигателя — Режим работы вращающегося электродвигателя при номинальном напряжении, но без нагрузки. [ГОСТ 27471 87] Тематики машины электрические вращающиеся в целом … Справочник технического переводчика
- режим холостого хода электромашинного генератора — Режим работы электромашинного генератора при номинальной частоте вращения, номинальном напряжении, но без нагрузки. [ГОСТ 27471 87] Тематики машины электрические вращающиеся в целом … Справочник технического переводчика
Режим холостого хода (электроника)
Режим холосто́го хо́да в электронике — состояние двухполюсника, при котором к его выводам не подключено никакой нагрузки (то есть, другими словами, сопротивление нагрузки бесконечно).
Часто вместо термина Режим холостого хода используется аббревиатура: Режим ХХ или просто ХХ.
Применение
Рассмотрение режима холостого хода применяется при анализе электрических цепей (к примеру, внутреннее сопротивление). В режиме холостого хода напряжение на двухполюснике равно напряжению генератора напряжения в эквивалентной схеме двухполюсника.
См. также
- Режим короткого замыкания
- Опыт холостого хода
Литература
- Электротехника и электроника: Учебник для сред. проф. образования / Б. И. Петленко, Ю. М. Иньков, А. В. Крашенинников и др.; Под ред. Б. И. Петленко. — М.: Издательский центр «Академия», 2003. — 320 с. ISBN 5-7695-1114-1
- Теоретические основы электроники
- Источники питания
Wikimedia Foundation . 2010 .
1.6. Холостой ход и короткое замыкание тока.
В режиме холостого хода внешняя цепь разомкнута (рис. 1.8.) При этом ее сопротивление равно бесконечности, а величина тока в цепи равна нулю. Следовательно, напряжение на зажимах генератора: Uxx= E.
Короткое замыкание возникает обычно в результате повреждения изоляции соединительных проводов. При этом зажимы генератора оказываются замкнуты проводником с ничтожно малым сопротивлением (рис. 1.9).
Рис. 1.9 Режим короткого замыкания.
Практически напряжение на зажимах генератора в режиме короткого замыкания равно нулю, и сопротивление цепи равно внутреннему сопротивлению генератора R0. Так как R0 обычно мало, величина тока короткого замыкания Iкз= оказывается очень большой.
Короткое замыкание является аварийным режимом работы и представляет собой большую опасность для электрических установок, т.к. может повлечь за собой их разрушение, вследствие перегрева, вызванного большими токами.
1.7. Расчет сложных электрических цепей постоянного тока.
Приведем основные понятия сложной цепи. Несколько последовательно соединенных элементов цепи, по которым проходит один и тот же ток, образуют ветвь. В общем случае ветвь может содержать как сопротивления, так и ЭДС.
Точка соединения трех и более ветвей называют узловой точкой или узлом.
Несколько ветвей, образующих замкнутую электрическую цепь называют контуром.
1.7.1. Метод непосредственного применения законов Кирхгофа
Универсальным методом расчета токов в сложных цепях постоянного тока с несколькими источниками электрической энергии, является метод непосредственного применения I и II законов Кирхгофа.
К узловым точкам схемы применяется I закон Кирхгофа, согласно которому сумма токов, притекающих к узлу равна сумме токов уходящих от него, т.е. алгебраическая сумма токов в узле равна нулю. ∑I =0
К контурам применяется II закон Кирхгофа, согласно которому алгебраическая сумма ЭДС, действующих в контуре, равна сумме падений напряжений на всех сопротивлениях контура.
По первому и второму законам Кирхгофа составляют столько уравнений, сколько неизвестных токов в цепи. По первому закону Кирхгофа составляют n-1 уравнений, где n – число узлов в цепи. Недостающие уравнения составляют по второму закону Кирхгофа.
Рассмотрим применение метода на примере сложной электрической цепи, схема которой представлена на рис. 1.10
Рис. 1.10. Сложная электрическая цепь постоянного тока.
Расчет токов, протекающих в ветвях сложной цепи, проводят по следующим правилам:
- По возможности упрощают схему, заменяя параллельно соединенные сопротивления одним эквивалентным. Для рассматриваемой схемы имеем
R567 =
- Определяют количество искомых токов в цепи и произвольно задают их направления. Количество искомых токов равно количеству ветвей в цепи. В рассматриваемой цепи после упрощения остается три ветви abcd, ad, afed, следовательно, требуется найти значения трех токов I1, I2, I3, для чего необходимо составить три уравнения по законам Кирхгофа.
- Определяют количество узлов в цепи и для всех узловых точек, кроме одной составляют уравнения по первому закону Кирхгофа. В рассматриваемой цепи две узловые точки a и d. Поэтому, по первому закону Кирхгофа составляется одно уравнение для узловой точки a, в соответствии с заданными направлениями токов
I1 + I2 = I3 (1.11)
- Выбирают произвольное направление обхода контуров по или против часовой стрелки и по второму закону Кирхгофа составляют недостающие уравнения. Для рассматриваемой цепи необходимо составить еще два уравнения. Они составляются по второму закону Кирхгофа, для контуров adef и abcd в соответствии с выбранными направлениями их обхода. При этом ЭДС и токи, совпадающие с направлением обхода контура, принимают со знаком плюс, а ЭДС и токи, противоположные этому направлению, со знаком минус. В результате получаем
E1 = I1 (R1+R2+R3) + I3R8 (1.12) E2 = I2 (R567+R4) + I3R8 (1.13) 5. Определяют неизвестные токи в ветвях, решая полученную систему уравнений (1.11), (1.12), (1.13). Если какие-то значения при расчете получаются со знаком минус, то это означает, что направления реальных токов противоположны заданным в начале расчета. Проверку решения задачи осуществляют путем расчета уравнения баланса мощностей: алгебраическая сумма мощностей развиваемых всеми источниками ЭДС равна сумме мощностей, потребляемых всеми сопротивлениями нагрузки. В общем виде уравнение баланса мощностей записывается как ∑EI=∑I 2 R. Применительно к рассматриваемой цепи, уравнение баланса мощностей принимает вид: E1I1+E2I2 = I(R1+R2+R3) + I(R4+R567) +IR8 (1.14) Если направление ЭДС совпадает с направлением тока в ветви, то их произведение включается в левую часть уравнения со знаком плюс, а если не совпадает, то со знаком минус, т.е.E I (+) и EI (-). Если расчет токов проведен правильно, то левая часть уравнения (1.14) равна его правой части.
Что такое режим холостого хода
Известно, что электрическая цепь – это совокупность определённых устройств, которые обеспечивают постоянное, непрерывное прохождение электрического тока. Работа цепи невозможна, если в ней отсутствуют какие-либо элементы; в обязательном порядке должны присутствовать как источники энергии, так и её проводники, а приёмники, как правило, — это основные устройства, образующие данную цепь.
Если учесть, что в электрической цепи встречаются различные элементы, которые делятся на три основные группы: источники энергии, проводники тока и приёмники, т. е., те элементы, которые питаются от тока и преобразуют энергию в другие её виды, то можно предположить, что существует и различные режимы работы электрических цепей.
Основные режимы работы электрических цепей
Как уже было сказано ранее, любая электрическая цепь может иметь довольно сложную структуру, зависящую от количества элементов в ней и её разветвлённости. Всё это приводит к тому, что цепь может работать в различных режимах.
Выделяют три основных режима работы: нагрузочный (или согласованный), режим короткого замыкания, а также режим холостого хода. Они отличаются друг от друга нагрузкой на электрическую цепь. Также можно выделить номинальный режим работы. В этом режиме работы все устройства в цепи работают при условиях, указанных для них как оптимальные. Эти характеристики прописываются производителем в паспортных данных при изготовлении устройства на заводе.
Нагрузочный, или согласованный режим работы. Если к источнику энергии в электрической цепи подключается какой-либо приёмник, то он обладает неким сопротивлением. Таким приёмником может быть любое устройство, например электрическая лампочка.
Если есть напряжение, то действует закон Ома , таким образом, ЭДС источника получается из суммы напряжений внешнего участка цепи и на внутреннем сопротивлении источника. Падение напряжение во внешней цепи будет равным напряжению на зажимах источника. Оно зависит от нагрузочного тока: чем меньше сопротивление нагрузки, тем больше ток и, соответственно, меньше напряжение на зажимах источника питания цепи.
Другими словами можно сказать, что нагрузочный или согласованный режим работы представляет собой режим, при котором происходит передача нагрузки повышенной мощности от источника. В этом режиме сопротивление нагрузки равно внутреннему сопротивлению источника, при этом расходуется максимальная мощность.
Однако, такой режим не рекомендуется использовать, так как при длительном превышении номинальных значений устройства могут выйти из строя.
Режим работы холостого хода. Этот режим работы электрической цепи характеризует разомкнутое её состояние – ток отсутствует, и все элементы отключены от источника питания.
В таком состоянии цепи внутреннее падение напряжение равно нулю, а напряжение на зажимах источника питание совпадает с ЭДС источника.
Т. е., можно сказать, что режим холостого хода характеризует электрическую цепь, когда она находится в разомкнутом состоянии, а сопротивление нагрузки отсутствует полностью или отключено. Такое состояние цепи можно использовать для измерения ЭДС источника питания.
Режим короткого замыкания. Этот режим работы считается аварийным, электрическая цепь не может работать нормально. Короткое замыкание возникает при соединении двух различных точек цепи, разница потенциалов которых отличается. Такое состояние не предусмотрено изготовителем устройства и нарушает его нормальную работу.
В этом режиме работы зажимы источника энергии замкнуты проводником («закорочены»), при этом его сопротивление близко к нулю. Часто, короткое замыкание происходит в тех случаях, когда соединяются два провода, которые связывают между собой источник и приёмник в цепи, как правило, их сопротивление незначительно, так что его можно назвать нулевым.
При возникновении режима короткого замыкания, ток в цепи значительно превышает номинальные значения (из-за отсутствия сопротивления). Это может привести в непригодное состояние источник энергии и приёмники в электрической цепи. В некоторых случаях это является результатом неправильных действий со стороны персонала, работающего с электротехническим оборудованием.