Что относится к показателям качества электрической энергии
Учет электроэнергии для предприятий
Комплексные решения для малого и среднего бизнеса
Передача почасовых отчетов в энергокомпании
Сдача отчетности в форматах 80020 по регламентам энергокомпаний
Снижение стоимости электроэнергии до 35%
Перевод на выгодную ценовую категорию «Под ключ»
Контроль качества электроэнергии
Фиксация отклонений напряжения и подготовка претензий к энергокомпаниям
Оперативный контроль электропотребления объектов в любое время на своем мобильном устройстве
Комплексные решения для внедрения АСКУЭ
Электросчётчики с модемами
Комплекты оборудования для быстрого внедрения АСКУЭ
Предлагаем счетчики 2020-2021 года выпуска с истекшим сроком МПИ
Решения на базе Ваших счётчиков
АСКУЭ с модемом или без него
Показатели качества электроэнергии
Качество электрической энергии — степень соответствия параметров электрической энергии их установленным значениям. В свою очередь, параметр электрической энергии — величина, количественно характеризующая какое-либо свойство электрической энергии. Под параметрами электрической энергии понимают напряжение, частоту, форму кривой электрического тока. Качество электрической энергии является составляющей электромагнитной совместимости, характеризующей электромагнитную среду.
Википедия даёт чёткое, ёмкое, но достаточно сухое определение.
Для простоты и понятности будем считать, что качественная электроэнергия — это электрическая энергия, параметры которой находятся в пределах установленных нормирующими документами.
Если показатели качества выйдут из установленных норм, это может привести к негативным последствиям:
- Увеличению расходов на электричество и потерь в сетях.
- Снижению надёжности работы или выход из строя оборудования.
- Нарушению технологических процессов.
Показатели качества определены в ГОСТ 32144-2013.
Контроль показателей качества электроэнергии
АСКУЭ «яЭнергетик» зафиксирует нарушения в электроснабжении и сформирует претензию для подачи поставщику электроэнергии.
Теперь давайте разберём основные критерии оценки:
- Отклонения напряжения определяет величину, при которой потребители могут функционировать без сбоев. От 220В нижний нормальный предел — 209В, в верхний — 231В, для 360В — 342В и 378В, соответственно.
- Размах изменения входного напряжения представляет собой разность величин действующей и амплитудной. Замеры производят за цикл перепада параметра.
- Доза фликера подразделяется на кратковременную (10 минут) и длительную (2 часа). Обозначает степень восприимчивости человеческого глаза к мерцанию света, причиной которого стало колебание питающей сети.
- Импульсное напряжение описывается временем восстановления, имеющего разную величину в зависимости от причины возникновения скачка.
- Коэффициенты для оценки качества питающей сети: по искажению синусоидальности, значения временного перенапряжения, гармонических составляющих, несимметричности по обратной и нулевой последовательностях.
- Интервал провала напряжения определяется периодом восстановления параметра, установленного в ГОСТ.
- Отклонение питающей частоты приводит к повреждениям электрических частей и проводников.
Отклонения входного напряжения
Показатели качества электроэнергии стараются сделать соответствующими установленным номиналам, прописанным в законодательных актах. Внимание уделяется погрешностям, возникающим при замерах U и F. Если имеются погрешности, то можно обращаться в надзорные органы, чтобы привлечь к ответственности поставщика электричества.
Общие требования к качеству электроэнергии включают параметр отклонения питающего напряжения, который подразделяют на две группы:
- Нормальный режим, когда отклонение составляет ±5%.
- Предел допустимого режима установлен для колебаний ±10%. Для сети 220В минимальный порог 198В и максимальный 242В, а для 360В — 324В и 396В, соответственно.
Восстановление напряжения должно происходить не дольше 2 минут.
Отклонение частоты
Соблюдение частоты в определенных границах одно из необходимых требований потребителей. При снижении показателя на 1 %, потери составляют более 2 %. Это выражается в экономических затратах и снижение производительности предприятий. Для обычного человека это приводит к повышенным суммам оплаты за электричество.
Скорость вращения асинхронного двигателя напрямую зависит от частоты питающей сети. Нагревающие ТЭНы имеют меньшую производительность при снижении частоты меньше 50 ГЦ. При завышенных значениях может происходить их повреждение, либо проблемы с другими механизмами, не рассчитанных на высокий момент вращения.
Отклонение частоты может повлиять на работу электроники. Так на экране телевизора возникают помехи при изменении показателя на ±0,1Гц. Кроме визуальных дефектов, возрастает риск вывода из строя микроэлементов. Методом борьбы с отклонениями качества электроэнергии выступает введение резервных питающих узлов, позволяющих в автоматическом режиме восстанавливать напряжение в установленные промежутки времени.
Принято считать, что отклонением частоты является усреднённая за 10 минут разность между фактической величиной основной частоты и её номинальной величиной. При этом допускаются:
- в нормальном режиме работы отклонения не более 0,1 Гц;
- кратковременные отклонения не более 0,2 Гц.
Оповещения о критических параметрах
С помощью АСКУЭ яЭнергетик Вы можете получать уведомления о критических параметрах электроэнергии. Для этого нужно нажать кнопку «Добавить новое» в блоке оповещения у необходимого рпараметра. Далее указывается адрес электронной почты, параметры по каждой из фаз и режим отправки уведомлений.
После сохранения, когда параметр опустится ниже или поднимется выше указанного, на почту придёт оповещение, и Вы сможете принять меры для минимизации потерь производства.
Заключение
Следите за качеством электроэнергии! Если вовремя обнаружить нарушения, можно избежать множества проблем: поломку приборов и оборудования, аварии и простои.
АСКУЭ яЭнергетик поможет контролировать качественные параметры, вовремя принимать меры, а если вы понесёте какие-либо потери по вине поставщика электроэнергии, поможет доказать факт некачественного электроснабжения и возместить ущерб.
Хотите получать вовремя новости о выходе статей в нашем блоге? Подписывайтесь на телеграм-канал yaenergetikru
Статья является объектом авторского права ООО «Технологии энергоучета». Запрещается любое использование текста и материалов данной статьи без указания источника: яЭнергетик.рф или yaenergetik.ru
Последнее обновление: 28.12.2021 09:38
- Возможности АСКУЭ яЭнергетик
- Контроль качества электроэнергии
- Нормативно-правовые вопросы
Контроль показателей качества электроэнергии
АСКУЭ «яЭнергетик» зафиксирует нарушения в электроснабжении и сформирует претензию для подачи поставщику электроэнергии.
- Все статьи
- Контроль качества электроэнергии
- Возможности АСКУЭ яЭнергетик
- Ценовые категории электроэнергии
- Обзор технологий учета электроэнергии
- Настройка оборудования
- Полезные советы
- Кейсы
- АСКУЭ электросетевой компании
- Видео
Что относится к показателям качества электрической энергии
- Работа в компании
- Закупки
- Библиотека
- Охрана труда
- Рус / Eng
- О заводе
- Каталог
- Установки компенсации реактивной мощности
- Регулируемые конденсаторные установки КРМ (АУКРМ) — 0,4 кВ
- Нерегулируемые конденсаторные установки КРМ (УКРМ ) — 0,4 кВ
- Тиристорные конденсаторные установки КРМТ (АУКРМТ) — 0,4 кВ
- Комплектующие для конденсаторных установок
- Серия PSPE1 (однофазные конденсаторы)
- Серия PSPE3 (трехфазные конденсаторы)
- Конденсаторы серии AFC3
- Конденсаторы серии FA2
- Конденсаторы серии FA3
- Конденсаторы серии FB3
- Конденсаторы серии FO1
- Конденсаторы серии PO1
- Конденсаторы серии SPC
- Серия K78-99 (пластиковый корпус)
- Серия К78-99 A (алюминиевый корпус)
- Серия К78-99 AP2 (взрывозащищенный)
- Серия К78-98 (пластиковый корпус)
- Серия К78-98 A (алюминиевый корпус)
- Серия К78-98 АР2 (взрывозащищенный)
• офис: с 9 00 до 17 30
• склад: с 9 00 до 17 00+7 (925) 517-34-27 (отдел продаж);
+7 (495) 744-31-71 (отдел продаж);
+7 (926) 673-77-58 (отдел персонала).- Охрана труда
- Установки компенсации реактивной мощности
- Регулируемые конденсаторные установки КРМ (АУКРМ) — 0,4 кВ
- Нерегулируемые конденсаторные установки КРМ (УКРМ ) — 0,4 кВ
- Тиристорные конденсаторные установки КРМТ (АУКРМТ) — 0,4 кВ
- Комплектующие для конденсаторных установок
- Серия PSPE1 (однофазные конденсаторы)
- Серия PSPE3 (трехфазные конденсаторы)
- Конденсаторы серии AFC3
- Конденсаторы серии FA2
- Конденсаторы серии FA3
- Конденсаторы серии FB3
- Конденсаторы серии FO1
- Конденсаторы серии PO1
- Конденсаторы серии SPC
- Серия K78-99 (пластиковый корпус)
- Серия К78-99 A (алюминиевый корпус)
- Серия К78-99 AP2 (взрывозащищенный)
- Серия К78-98 (пластиковый корпус)
- Серия К78-98 A (алюминиевый корпус)
- Серия К78-98 АР2 (взрывозащищенный)
Сертификаты
ЗАДАТЬ ВОПРОС
ЗАДАЙТЕ ВОПРОС ONLINE
на Ваши вопросы ответят профильные специалисты
ЗАДАТЬ ВОПРОС
Спасибо за интерес, проявленный к нашей Компании- Словарь терминов
- Показатели качества электроэнергии
Показатели качества электроэнергии
Отправить другуПоказатели качества электроэнергии имеют собственное понятие качества относительно других видов продукции. Электрическая энергия имеет очень широкий спектр применения и обладает рядом специфических свойств которые влияют на качество производимой продукции. Потребитель электрической энергии имеет четко обозначенные технические характеристики по условиям присоединения к электрической сети: напряжение, ток потребления, мощность, частота. Качество электрической энергии определяется совокупностью требований, при которых потребители электрической энергии будут работать в режиме, позволяющем выполнять заложенные в них функции.
Поэтому в соответствии с Законом Российской Федерации «О защите прав потребителей» (ст.7) и постановлением Правительства России от 13 августа 1997г. №1013 электрическая энергия подлежит обязательной сертификации по показателям качества электроэнергии согласно ГОСТ 13109-97 «Нормы качества электрической энергии в системах электроснабжения общего назначения».
Показателями качества электроэнергии являются:
- отклонение напряжения от своего номинального значения;
- колебания напряжения от номинала;
- несинусоидальность напряжения;
- несимметрия напряжений;
- отклонение частоты от своего номинального значения;
- длительность провала напряжения;
- импульс напряжения;
- временное перенапряжение.
Отклонения напряжения от своего номинального значения оказывает значительное влияние на работу электродвигателей. В случае снижения напряжения на зажимах двигателя уменьшается реактивная мощность намагничивания, при той же потребляемой мощности увеличивается ток двигателя, что вызывает перегрев изоляции. Повышенный износ изоляции приводит к сокращению срока службы двигателя. При значительном снижении напряжения на зажимах асинхронного двигателя, возможно его «опрокидывание» резкое падение момента на его валу и значительный рост тока в обмотках статора, что может привести к его возгоранию. Снижение напряжения ухудшает и условия пуска двигателя, так как при этом уменьшается его пусковой момент. Повышение напряжения на выводах двигателя приводит к увеличению потребляемой им реактивной мощности, которую необходимо компенсировать.
- размах изменения напряжения;
- доза фликера.
Причины выхода показателей за пределы норм состоят в использовании потребителей электрической энергии с быстропеременными режимами работы, сопровождающимися резкими изменениями мощности (главным образом реактивной) нагрузки.
Показатели качества электроэнергии можно улучшить, используя установки компенсации реактивной мощности (УКРМ), которые скомпенсируют резкое изменение реактивной мощности, снизят токовые нагрузки на сеть, что позволит уменьшить значения отклонения и колебания напряжения от номинального значения.
Если Вы желаете купить конденсаторную установку или узнать цену на установки компенсации реактивной мощности, позвоните по телефону указанному ниже или заполните приведенную форму. В этом случае, в ближайшее время мы с Вами свяжемся для уточнения особенностей Вашего проекта, необходимых для расчета стоимости КРМ
Показатели качества электрической энергии
Стандартом устанавливаются следующие показатели качества электроэнергии (ПКЭ):
установившееся отклонение напряжения
размах изменения напряжения
доза фликера
коэффициент искажения синусоидальности кривой напряжения
коэффициент n-ой гармонической составляющей напряжения
коэффициент несимметрии напряжений по обратной последовательности
коэффициент несимметрии напряжений по нулевой последовательности
отклонение частоты
длительность провала напряжения
импульсное напряжение
коэффициент временного перенапряженияПри определении значений некоторых ПКЭ стандартом вводятся следующие вспомогательные параметры электрической энергии:
интервал между изменениями напряжения
глубина провала напряжения
частота появления провалов напряжения
длительность импульса по уровню 0,5 его амплитуды
длительность временного перенапряжения .Часть ПКЭ характеризует установившиеся режимы работы электрооборудования энергоснабжающей организации и потребителей ЭЭ и дает количественную оценку по КЭ особенностям технологического процесса производства, передачи, распределения и потребления ЭЭ. К этим ПКЭ относятся: установившееся отклонение напряжения, коэффициент искажения синусоидальности кривой напряжения, коэффициент n-ой гармонической составляющей напряжения, коэффициент несимметрии напряжений по обратной последовательности, коэффициент несимметрии напряжений по нулевой последовательности, отклонение частоты, размах изменения напряжения.
Оценка всех ПКЭ, относящихся к напряжению, производится по действующим его значениям.
Для характеристики вышеперечисленных показателей стандартом установлены численные нормально и предельно допустимые значения ПКЭ или нормы.
Другая часть ПКЭ характеризует кратковременные помехи, возникающие в электрической сети в результате коммутационных процессов, грозовых атмосферных явлений, работы средств защиты и автоматики и в после аварийных режимах. К ним относятся провалы и импульсы напряжения, кратковременные перенапряжения. Для этих ПКЭ стандарт не устанавливает допустимых численных значений. Для количественной оценки этих ПКЭ должны измеряться амплитуда, длительность, частота их появления и другие характеристики, установленные, но не нормируемые стандартом. Статистическая обработка этих данных позволяет рассчитать обобщенные показатели, характеризующие конкретную электрическую сеть с точки зрения вероятности появления кратковременных помех.
Для оценки соответствия ПКЭ указанным нормам (за исключением длительности провала напряжения, импульсного напряжения и коэффициента временного перенапряжения) стандартом устанавливается минимальный расчетный период, равный 24 ч.
В связи со случайным характером изменения электрических нагрузок требование соблюдения норм КЭ в течение всего этого времени практически нереально, поэтому в стандарте устанавливается вероятность превышения норм КЭ. Измеренные ПКЭ не должны выходить за нормально допустимые значения с вероятностью 0,95 за установленный стандартом расчетный период времени (это означает, что можно не считаться с отдельными превышениями нормируемых значений, если ожидаемая общая их продолжительность составит менее 5% за установленный период времени).
Другими словами, КЭ по измеренному показателю соответствует требованиям стандарта, если суммарная продолжительность времени выхода за нормально допустимые значения составляет не более 5% от установленного периода времени, т.е. 1 ч 12 мин, а за предельно допустимые значения – 0 % от этого периода времени.
Рекомендуемая общая продолжительность измерений ПКЭ должна выбираться с учетом обязательного включения рабочих и выходных дней и составляет 7 суток .
В стандарте указаны вероятные виновники ухудшения КЭ. Отклонение частоты регулируется питающей энергосистемой и зависит только от нее. Отдельные ЭП на промышленных предприятиях (а тем более в быту) не могут оказать влияния на этот показатель, так как мощность их несоизмеримо мала по сравнению с суммарной мощностью генераторов электростанций энергосистемы. Колебания напряжения, несимметрия и несинусоидальность напряжения вызываются, в основном, работой отдельных мощных ЭП на промышленных предприятиях, и только величина этих ПКЭ зависит от мощности питающей энергосистемы в рассматриваемой точке подключения потребителя. Отклонения напряжения зависят как от уровня напряжения, которое подается энергосистемой на промышленные предприятия, так и от работы отдельных промышленных ЭП, особенно с большим потреблением реактивной мощности. Поэтому вопросы КЭ следует рассматривать в непосредственной связи с вопросами компенсации реактивной мощности. Длительность провала напряжения, импульсное напряжение, коэффициент временного перенапряжения, как уже отмечалось, обуславливаются режимами работы энергосистемы.
В таблице 2.1. приведены свойства электрической энергии, показатели их характеризующие и наиболее вероятные виновники ухудшения КЭ .
Свойства электрической энергии
Наиболее вероятные виновники ухудшения КЭ
Характеристика показателей качества электроэнергии
3.1 Отклонение напряжения Отклонения напряжения от номинальных значений происходят из-за суточных, сезонных и технологических изменений электрической нагрузки потребителей; изменения мощности компенсирующих устройств; регулирования напряжения генераторами электростанций и на подстанциях энергосистем; изменения схемы и параметров электрических сетей. Отклонение напряжения определяется разностью между действующим U и номинальным значениями напряжения UНОМ , В: (3.1) или,% (3.2) Установившееся отклонение напряжения равно, % : (3.3) где – установившееся (действующее) значение напряжения за интервал усреднения (см. п. 3.8). В электрических сетях однофазного тока действующее значение напряжения определяется как значение напряжения основной частоты без учета высших гармонических составляющих напряжения, а в электрических сетях трехфазного тока — как действующее значение напряжения прямой последовательности основной частоты . Стандартом нормируются отклонения напряжения на выводах приемников электрической энергии. Нормально допустимые и предельно допустимые значения установившегося отклонения напряжения равны соответственно ±5 и ±10 % от номинального значения напряжения и в точках общего присоединения потребителей электрической энергии должны быть установлены в договорах энергоснабжения для часов минимума и максимума нагрузок в энергосистеме с учетом необходимости выполнения норм стандарта на выводах приемников электрической энергии в соответствии с нормативными документами. 3.2 Колебания напряжения Колебания напряжения вызываются резким изменением нагрузки на рассматриваемом участке электрической сети, например, включением асинхронного двигателя с большой кратностью пускового тока, технологическими установками с быстропеременным режимом работы, сопровождающимися толчками активной и реактивной мощности – такими как, привод реверсивных прокатных станов, дуговые сталеплавильные печи, сварочные аппараты и т.п. Колебания напряжения характеризуются двумя показателями:
- размахом изменения напряжения
- дозой фликера
Размах изменения напряжения вычисляют по формуле, % (3.4) где , – значения следующих один за другим экстремумов (или экстремума и горизонтального участка) огибающей среднеквадратичных значений напряжения, в соответствии с рис.3.1. Рис.3.1. Колебания напряжения Частота повторения изменений напряжения , (1/с, 1/мин) определяется по выражению: (3.5) где m – число изменений напряжения за время Т;
Т – интервал времени измерения, принимаемый равным 10 мин. Если два изменения напряжения происходят с интервалом менее 30 мс, то их рассматривают как одно. Интервал времени между изменениями напряжения равен: (3.6) Оценка допустимости размахов изменения напряжения (колебаний напряжения) осуществляется с помощью кривых зависимости допустимых размахов колебаний от частоты повторений изменений напряжения или интервала времени между последующими изменениями напряжения. КЭ в точке общего присоединения при периодических колебаниях напряжения, имеющих форму меандра (прямоугольную) (см. рис 3.2) считают соответствующим требованиям стандарта, если измеренное значение размаха изменений напряжения не превышает значений, определяемых по кривым рис. 3.2 для соответствующей частоты повторения изменений напряжения , или интервала между изменениями напряжения . Рис.3.2. Колебания напряжения произвольной формы (а) и имеющие форму меандра(б) Предельно допустимое значение суммы установившегося отклонения напряжения δUУ и размаха изменений напряжения ?Ut в точках присоединения к электрическим сетям напряжением 0,38 кВ равно ±10 % от номинального напряжения . Доза фликера — это мера восприимчивости человека к воздействию колебаний светового потока, вызванных колебаниями напряжения в питающей сети, за установленный промежуток времени. Стандартом устанавливается кратковременная () и длительная доза фликера () (кратковременную определяют на интервале времени наблюдения, равном 10 мин, длительную на интервале – 2 ч). Исходными данными для расчета являются уровни фликера, измеряемые с помощью фликерметра — прибора, в котором моделируется кривая чувствительности (амплитудно-частотная характеристика) органа зрения человека. В настоящее время в Российской Федерации началась разработка фликерметров для контроля колебаний напряжения. КЭ по дозе фликера соответствует требованиям стандарта, если кратковременная и длительная дозы фликера, определенные путем измерения в течении 24 ч или расчета, не превышают предельно допустимых значений: для кратковременной дозы фликера – 1,38 и для длительной – 1,0 (при колебаниях напряжения с формой, отличающейся от меандра) . Предельно допустимое значение для кратковременной дозы фликера в точках общего присоединения потребителей электроэнергии, располагающих лампами накаливания в помещениях, где требуется значительное зрительное напряжение, равно 1,0, а для длительной — 0,74, при колебаниях напряжения с формой, отличающейся от меандра. 3.3 Несинусоидальность напряжения В процессе выработки, преобразования, распределения и потребления электроэнергии имеют место искажения формы синусоидальных токов и напряжений. Источниками искажений являются синхронные генераторы электростанций, силовые трансформаторы, работающие при повышенных значениях магнитной индукции в сердечнике (при повышенном напряжении на их выводах) преобразовательные устройства переменного тока в постоянный и ЭП с нелинейными вольт — амперными характеристиками (или нелинейные нагрузки). Искажения, создаваемые синхронными генераторами и силовыми трансформаторами, малы и не оказывают существенного влияния на систему электроснабжения и на работу ЭП. Главной причиной искажений являются вентильные преобразователи, электродуговые сталеплавильные и руднотермические печи, установки дуговой и контактной сварки, преобразователи частоты, индукционные печи, ряд электронных технических средств (телевизионные приемники, ПЭВМ), газоразрядные лампы и др. Электронные приемники электроэнергии и газоразрядные лампы создают при своей работе невысокий уровень гармонических искажений на выходе, но общее количество таких ЭП велико. Из курса математики известно, что любую несинусоидальную функцию (например, см. рис.3.3), удовлетворяющую условию Дирихле можно представить в виде суммы постоянной величины и бесконечного ряда синусоидальных величин с кратными частотами. Такие синусоидальные составляющие называются гармоническими составляющими или гармониками. Синусоидальная составляющая, период которой равен периоду несинусоидальной периодической величины, называется основной или первой гармоникой. Остальные составляющие синусоиды с частотами со второй по n-ую называют высшими гармониками. Рис.3.3. Несинусоидальность напряжения Несинусоидальность напряжения характеризуется следующими показателями :- коэффициентом искажения синусоидальности кривой напряжения.
- коэффициентом n-ой гармонической составляющей напряжения.
Коэффициент искажения синусоидальности кривой напряжения определяется по выражению, % ;(3.7) где – действующее значение n-ой гармонической составляющей напряжения, В;
n – порядок гармонической составляющей напряжения,
N – порядок последней из учитываемых гармонических составляющих напряжения, стандартом устанавливается N =40;
– действующее значение напряжения основной частоты, В. Допускается определять по выражению, % (3.8) где – номинальное напряжение сети, В. Коэффициент n-ой гармонической составляющей напряжения равен, % (3.9) Допускается вычислять по выражению, % (3.10) Для вычисления необходимо определить уровень напряжения отдельных гармоник, генерируемых нелинейной нагрузкой. Фазное напряжение гармоники в расчетной точке сети находят из выражения : (3.11) где – действующее значение фазного тока n — ой гармоники; – напряжение нелинейной нагрузки (если расчетная точка совпадает с точкой присоединения нелинейной нагрузки , то = ); – номинальное напряжение сети; – мощность короткого замыкания в точке присоединения нелинейной нагрузки. Для расчета необходимо предварительно определить ток соответствующей гармоники, который зависит не только от электрических параметров, но и от вида нелинейной нагрузки. Нормально допустимые и предельно допустимые значения в точке общего присоединения к электрическим сетям с разным номинальным напряжением приведены в таблице 3.1 . Таблица 3.1 Значения коэффициента искажения синусоидальности кривой напряженияНормально допустимые значения при , кВ Предельно допустимые значения при , кВ 0,38 6 –20 35 110–330 0,38 6 –20 35 110–330 8,0 5,0 4,0 2,0 12,0 8,0 6,0 3,0 3.4 Несимметрия напряжения Наиболее распространенными источниками несимметрии напряжений в трехфазных системах электроснабжения являются такие потребители электроэнергии, симметричное многофазное исполнение которых или невозможно, или нецелесообразно по технико — экономическим соображениям. К таким установкам относятся индукционные и дуговые электрические печи, тяговые нагрузки железных дорог, выполненные на переменном токе, электросварочные агрегаты, специальные однофазные нагрузки, осветительные установки. Несимметричные режимы напряжений в электрических сетях имеют место также в аварийных ситуациях – при обрыве фазы или несимметричных коротких замыканиях. Несимметрия напряжений характеризуется наличием в трехфазной электрической сети напряжений обратной или нулевой последовательностей, значительно меньших по величине соответствующих составляющих напряжения прямой (основной) последовательности. Несимметрия трехфазной системы напряжений возникает в результате наложения на систему прямой последовательности напряжений системы обратной последовательности, что приводит к изменениям абсолютных значений фазных и междуфазных напряжений (рис.3.4.). Рис.3.4. Векторная диаграмма напряжений прямой и обратной последовательности. Помимо несимметрии, вызываемой напряжением системы обратной последовательности, может возникать несимметрия от наложения на систему прямой последовательности напряжений системы нулевой последовательности. В результате смещения нейтрали трехфазной системы возникает несимметрия фазных напряжений при сохранении симметричной системы междуфазных напряжений (рис.3.5.). Рис.3.5. Векторная диаграмма напряжений прямой и нулевой последовательности. Несимметрия напряжений характеризуется следующими показателями:
- коэффициентом несимметрии напряжений по обратной последовательности.
- коэффициентом несимметрии напряжений по нулевой последовательности.
Коэффициент несимметрии напряжений по обратной последовательности равен, % (3.13) где – действующее значение напряжения обратной последовательности основной частоты трехфазной системы напряжений, В; — действующее значение напряжения прямой последовательности основной частоты, В. Допускается вычислять по выражению, % : (3.14) где – номинальное значение междуфазного напряжения сети, В. Коэффициент несимметрии напряжений по нулевой последовательности равен, % : (3.15) где – действующее значение напряжения нулевой последовательности основной частоты трехфазной системы напряжений, В. Допускается вычислять по формуле, % (3.16) где – номинальное значение фазного напряжения, В. Измерение коэффициента несимметрии напряжений по нулевой последовательности проводят в четырехпроводной сети. Относительная погрешность определения и по формулам (3.15) и (3.16) численно равна значению отклонений напряжения от . Нормально допустимое и предельно допустимое значения коэффициента несимметрии напряжений по обратной последовательности в точке общего присоединения к электрическим сетям равны 2,0 и 4,0 % . Нормированные значения коэффициента несимметрии напряжений по нулевой последовательности в точке общего присоединения к четырехпроводным электрическим сетям с номинальным напряжением 0,38 кВ также равны 2,0 и 4,0 % . 3.5 Отклонения частоты Отклонение частоты – разность между действительным и номинальным значениями частоты, Гц (3.16) или, % (3.17) Стандартом устанавливаются нормально и предельно допустимые значения отклонения частоты равные ± 0,2 Гц и ± 0,4 Гц соответственно. 3.6 Провал напряжения К провалам напряжения относится внезапное значительное изменение напряжения в точке электрической сети ниже уровня 0,9, за которым следует восстановление напряжения до первоначального или близкого к нему уровня через промежуток времени от десяти миллисекунд до нескольких десятков секунд (рис. 3.6). Рис.3.6. Провал напряжения Характеристикой провала напряжения является его длительность — , равная: (3.18) где и – начальный и конечный моменты времени провала напряжения. Провал напряжения характеризуется также глубиной провала напряжения – разностью между номинальным значением напряжения и минимальным действующим значением напряжения, выраженной в единицах напряжения или в процентах от его номинального значения. Провал напряжения вычисляется по выражениям (3.20) или, % (3.21) Предельно допустимое значение длительности провала напряжения в электрических сетях напряжением до 20 кВ включительно равно 30 с. Длительность автоматически устраняемого провала напряжения в любой точке присоединения к электрическим сетям определяется выдержками времени релейной защиты и автоматики . 3.7 Импульс напряжения и временное перенапряжение Искажение формы кривой питающего напряжения может происходить за счет появления высокочастотных импульсов при коммутациях в сети, работе разрядников и т.д. Импульс напряжения — резкое изменение напряжения в точке электрической сети, за которым следует восстановление напряжения до первоначального или близкого к нему уровня. Величина искажения напряжения при этом характеризуется показателем импульсного напряжения (рис.3.7). Рис.3.7. Параметры импульсного напряжения Импульсное напряжение в относительных единицах равно: (3.22) где – значение импульсного напряжения, В. Амплитудой импульса называется максимальное мгновенное значение импульса напряжения. Длительность импульса — это интервал времени между начальным моментом импульса напряжения и моментом восстановления мгновенного значения напряжения до первоначального или близкого к нему уровня . Показатель — импульсное напряжение стандартом не нормируется. Временное перенапряжение – повышение напряжения в точке электрической сети выше 1,1 продолжительностью более 10 мс, возникающие в системах электроснабжения при коммутациях или коротких замыканиях (рис. 3.8.). Рис.3.8. Временное перенапряжение Временное перенапряжение характеризуется коэффициентом временного перенапряжения ( ): это величина, равная отношению максимального значения огибающей амплитудных значений напряжения за время существования временного перенапряжения к амплитуде номинального напряжения сети. (3.23) Длительностью временного перенапряжения называется интервал времени между начальным моментом возникновения временного перенапряжения и моментом его исчезновения . (3.24) Коэффициент временного перенапряжения стандартом также не нормируется. Значения коэффициента временного перенапряжения в точках присоединения электрической сети общего назначения в зависимости от длительности временных перенапряжений не превышают значений приведеных в таблице 3.3 . Таблица 3.3 Зависимость коэффициента временного перенапряжения от длительности перенапряжения
Длительности временных перенапряжений, с До 1 До 20 До 60 Коэффициент временного перенапряжения, о.е. 1,47 1,31 1,15 В среднем за год в точке присоединения возможны около 30 временных перенапряжений. При обрыве нулевого проводника в трехфазных электрических сетях напряжением до 1 кВ, работающих с глухозаземленной нейтралью, возникают временные перенапряжения между фазой и землей. Уровень таких перенапряжений при значительной несимметрии фазных нагрузок может достигать значений междуфазного напряжения, а длительность нескольких часов. 3.8 Статистическая оценка показателей качества электроэнергии Изменения параметров электрической сети, мощности и характера нагрузки во времени являются основной причиной изменения ПКЭ. Таким образом, ПКЭ — установившееся отклонение напряжения, коэффициенты, характеризующие несинусоидальность и несимметрию напряжений, отклонение частоты, размах изменения напряжения и др. – величины случайные и их измерения и обработка должны базироваться на вероятностно-статистических методах. Поэтому, как уже отмечалось, в стандарте устанавливаются нормы ПКЭ и оговаривается необходимость их выполнения в течение 95 % времени каждых суток (для нормально допустимых значений). Наиболее полную характеристику случайных величин дают законы их распределения, позволяющие находить вероятности появления тех или иных значений ПКЭ. Применение вероятностно-статистических методов поясним на примере оценки отклонений напряжения. Опыт эксплуатации показывает наличие суточных, недельных и более длительных циклов изменения отклонений напряжения во времени. Статистические данные подтверждают, что наиболее точно закон распределения отклонений напряжения в электрических сетях может быть описан с помощью нормального закона распределения, которым и пользуются в практике контроля КЭ . Аналитическое описание нормального закона осуществляется с помощью двух параметров: математического ожидания случайной величины и стандартного отклонения от среднего . Уравнение кривой распределения отклонений напряжения от номинального, соответствующей нормальному закону распределения, имеет вид: (3.25) Выражение (3.25) записано для непрерывного процесса изменения случайной величины. Для упрощения приборов контроля КЭ непрерывные случайные величины, которыми являются ПКЭ, заменяются при контроле дискретными последовательностями их значений. Наиболее удобной формой представления информации об изменениях случайной величины является гистограмма. Гистограмма – графическое представление статистического ряда исследуемого показателя, изменение которого носит случайный характер (рис.3.9.). При этом весь диапазон, отклонений напряжения делится на интервалы равной ширины (например 1,25 %). Каждому интервалу дается название – значение отклонений напряжения, соответствующее середине интервала , и находится вероятность (частота) попадания отклонений напряжения в этот интервал (3.26) где ni – число попаданий в i-й интервал; n– общее число измерений. Рис.3.9. Гистограмма отклонений напряжения. На основании гистограммы дается ответ: какого качества электроэнергия в точке контроля. Такая оценка делается по сумме значений попадания в интервалы, укладывающиеся в допустимый диапазон отклонений напряжения. С помощью гистограммы находится и вероятность отклонений напряжения за нормально допустимые значения. Это позволяет судить о причинах низкого качества напряжения в электрической сети и выбрать мероприятия для его улучшения. Для оценки качества напряжения широко применяются числовые характеристики и , определяемые из гистограммы. Математическое ожидание определяет средний уровень отклонений напряжения в рассматриваемой точке сети за контролируемый период времени (3.27) где k – число интервалов гистограммы. Рассеяние отклонений напряжения характеризуется дисперсией . Она равна математическому ожиданию квадрата отклонений случайной величины от ее среднего значения и определяется из выражения (3.28) Параметр является стандартным отклонением и характеризует рассеяние гистограммы, т.е. разброс отклонений напряжения вокруг математического ожидания. Для большинства гистограмм отклонений напряжения интегральная вероятность попадания в диапазон 4 составляет 0,95. Это означает, что для удовлетворения требований стандарта значение по результатам измерений не должно превышать 1/4 от ширины допустимого диапазона. Так, если допустимый диапазон отклонения напряжения , то необходимо, чтобы не превышало 2,5 %. Стандартом устанавливаются способы и методики определения ПКЭ и вспомогательных параметров, реализующие положения математической статистики и теории вероятностей. Для измеренных дискретных значений ПКЭ устанавливаются интервалы усреднения, представленные в таблице 3.4 . Таблица 3.4 Интервалы усреднения результатов измерений показателей КЭ
Показатель КЭ Интервал усреднения, с Установившееся отклонение напряжения 60 Размах изменения напряжения — Доза фликера — Коэффициент искажения синусоидальности кривой напряжения 3 Коэффициент n-ой гармонической составляющей напряжения 3 Коэффициент несимметрии напряжений по обратной последовательности 3 Коэффициент несимметрии напряжений по нулевой последовательности 3 Отклонение частоты 20 Длительность провала напряжения — Импульсное напряжение — Коэффициент временного перенапряжения — Для интервалов усреднения различных ПКЭ стандартом устанавливается количество наблюдения (N) и, пользуясь методикой, изложенной в стандарте, определяется тот или иной ПКЭ. Например, вычисляют значение усредненного напряжения в вольтах, как результат усреднения N наблюдений напряжений за интервал времени 1 мин по формуле : (3.29) где – значение напряжения в i — ом наблюдении, В. Число наблюдений за 1 мин в соответствии со стандартом должно быть не менее 18. Вычисляют значение установившегося отклонения напряжения по формуле, % (3.30) Накопленные за минимальный расчетный период значения ПКЭ обрабатываются методами математической статистики и определяются вероятности соответствия их нормам стандарта. Методики определения ПКЭ установленные стандартом реализуются в аппаратурных средствах контроля КЭ. Форма представления результатов обработки измерения также должна отвечать требованиям стандарта. В таблице 3.5 приведены сводные данные по нормам ПКЭ. Таблица 3.5 Нормы качества электрической энергии
Показатель КЭ, ед. измерения Нормы КЭ Нормально допустимые Предельно допустимые 1 2 3 Установившееся отклонение напряжения , % ± 5 ± 10 Размах изменения напряжения , % — Кривые 1,2 на рис. 3.2 Доза фликера, относит. ед. кратковременная — 1,38; 1,0 Доза фликера, относит. ед. длительная — 1,0; 0,74 Коэффициент искажения синусоидальности кривой напряжения , % По таблице 3.1 По таблице 3.1 Коэффициент n-ой гармонической составляющей напряжения , % По таблице 3.2 По таблице 3.2 Коэффициент несимметрии напряжений по обратной последовательности , % 2 4 Коэффициент несимметрии напряжений по нулевой последовательности , % 2 4 Отклонение частоты , Гц ± 0,2 ± 0,4 Длительность провала напряжения , с — 30 Импульсное напряжение , кВ — — Коэффициент временного перенапряжения , относит. ед.: — —
- Установки компенсации реактивной мощности