Что опознает и анализирует сигнал
Перейти к содержимому

Что опознает и анализирует сигнал

  • автор:

Анализаторы человека (таблица)

Анализатор – это часть нервной системы, которая воспринимает воздействия внешних раздражителей, трансформирует их в нервный сигнал, передаёт этот сигнал в мозг и там анализирует его. Каждый анализатор связан с каким-либо одним видом воспринимаемой энергии.

Материал подготовлен совместно с учителем высшей категории Щербань Ларисой Степановной.
Опыт работы учителем биологии — более 19 лет.

Строение анализатора

Учение об анализаторах создано И. П. Павловым. Он впервые рассмотрел анализатор как единую систему, состоящую из трёх частей:

  • рецепторный отдел;
  • проводниковый отдел;
  • центральный отдел.

Таблица «Анализаторы человека»

Вид анализатора

Орган чувств, в котором находятся рецепторы

Центральный отдел

Затылочная доля коры

Преддверие и три полукружных канала

Височная кора и мозжечок

Теменная доля коры

Наибольшее количество информации в организм поставляет зрительный анализатор. Вторым по значению является слуховой.

Обонятельный анализатор позволяет различать запахи, его дополняет вкусовой анализатор, с помощью которого определяем вкус пищи.

Вестибулярный анализатор обеспечивает ориентацию человека в пространстве и чувство равновесия. Его рецепторы находятся внутри головы, в височной кости.

ТОП-4 статьи

которые читают вместе с этой

Осязательный анализатор называют еще кожно-мышечным. Благодаря ему мы чувствуем как приятные прикосновения, так и болевые ощущения.

Рецепторы

Рецепторами называют чувствительные клетки, которые имеют свойства воспринимать раздражения и преобразовывать их в нервный импульс. Они находятся в органах чувств. В зависимости от раздражителя, который они воспринимают, выделяют следующие виды рецепторов:

Фоторецепторы человека под микроскопом

  • фоторецепторы;
  • хеморецепторы;
  • механорецепторы;
  • терморецепторы.

Фоторецепторы воспринимают энергию света и являются частью зрительного анализатора.

Хеморецепторы составляют воспринимающую часть вкусового и обонятельного анализаторов. Они превращают в нервный импульс воздействие химических веществ.

Ощущение вкуса возникает только при растворении вещества в слюне. Если язык высушить и положить на него сахар, человек не ощутит его вкуса пока сахар не будет смочен слюной.

Механорецепторы воспринимают воздействие механических стимулов. Они входят в состав слухового, осязательного и вестибулярного анализаторов человека.

Проводниковая часть анализаторов направляет импульс в центральный отдел. Так, зрительный нерв передаёт нервный импульс от фоторецепторов в головной мозг. По слуховому нерву передаётся в мозг информация от слуховых рецепторов уха.

В центральных отделах анализаторов происходит анализ поступившей информации и формирование ощущений.

Сенсорные зоны коры мозга

Именно благодаря тому, что нервные импульсы попадают в различные области мозга, не происходит путаницы в их насыщенном потоке.

Функции

В анализаторах поочерёдно осуществляются следующие процессы:

  • обнаружение сигналов;
  • различение сигналов;
  • передача и преобразование сигналов;
  • распознавание сигналов;
  • опознание образов.

Цель процессов передачи и преобразования – донести до мозга информацию в удобной форме. Поэтому отбирается только важная информация, ненужная отсеивается.

Опознание образов и возникновение определенных ощущений – это конечная операция анализатора. Человек опознаёт образ, относит его к какой-либо категории, считает важным или несущественным.

Что мы узнали?

Изучая в 8 классе данную тему, мы выяснили строение и функции анализаторов. Любой анализатор состоит из рецепторов, проводящих нервов и определенной доли коры больших полушарий, где происходит анализ поступившей информации. Анализаторы чувств человека взаимодействуют с памятью, в которой хранятся уже известные образы.

Что такое анализатор спектра?

Анализатор спектра предназначен для измерения и визуализации сигнального спектра. В быту этот прибор не используется, но его часто можно встретить в лабораториях и на производстве в промышленных предприятиях. Спектроанализаторы реагируют на изменение амплитуды звуковой волны.

Что такое анализатор спектра?

Это устройство для визуализации и анализа спектра сигнала. Сигнальный спектр представляет собой набор синусоидальных волн в конкретный момент времени. С помощью анализатора спектра можно увидеть распределение энергии по частотам и получить амплитудно-частотную характеристику сигнала. На основании полученных данных можно заглушить шумы и помехи, вернуть сигнал в закрепленную за ним частоту. После выяснения того, что такое анализатор спектра радиочастот, следует ознакомиться с работой прибора. Устройство применяется:

  • при измерении частотных характеристик в микроволновой и радиоволновой областях;
  • во время тестирования кабельного телевидения, радио;
  • для решения узкоспециализированных задач, направленных на повышение совместимости двух радиоприборов, проверки устойчивости готовой техники к помехам и т.д.;
  • для калибровки генераторов;
  • во время контроля, испытаний, тестирования качества электронных изделий;
  • для изучения спектральных показателей;
  • для проверки соответствия устройств мобильной и радиосвязи действующим стандартам;
  • в процессе диагностики импульсного соответствия и работы генераторов.

Принцип работы и назначение

Интерес к тому, как работает анализатор спектра, вполне естественен. Основное назначение анализатора спектра – наблюдение и измерение колебаний энергии в частотной полосе. Эти процедуры нужно проводить для того, чтобы радиоприборы работали исключительно в своей полосе, не создавая друг для друга помех. По результатам полученных с помощью анализатора измерений осуществляется дальнейшая настройка техники. Принцип действия анализатора спектра зависит от его типа. В основе работы свипирующих приборов лежит супергетеродинный приемник:

  1. Входящий радиочастотный сигнал смешивается с частотой локального осциллятора. Результатом этого процесса становится сигнал с более низкой промежуточной частотой (ПЧ).
  2. Новый сигнал проходит через несколько усилительных каскадов.

ec2818ea57901109f3b56f517114e619.JPG

В современном свипирующем оборудовании используют цифровые компоненты (сигнальные процессоры, микропроцессоры и т.д.). Принципы работы анализатора спектра в реальном времени будут сильно отличаться:

  1. Устройство собирает информацию во временной области, а после с помощью преобразования Фурье переводит ее в частотную область.
  2. Принятые устройством радиочастотные сигналы преобразуются далее. Усиление и ослабление.
  3. Аналогово-цифровой преобразователь (АЦП) оцифровывает последнюю ПЧ. Дальнейшая обработка производится цифровыми процессорами.

У некоторых моделей цифровых анализаторов существуют режимы демодуляции. При их активации входной сигнал оцифровывается без частотного преобразования. Модулирующие сигналы обрабатываются, как и радиочастотные.

Типы анализаторов спектра радиочастот

Существует много видов измеряющего спектрального оборудования. Классифицируют приборы исходя из их основных характеристик:

  • По принципу действия: последовательные (сканирующие) и параллельные (многоканальные).
  • По способу обработки поступающей информации: аналоговые и цифровые.
  • По виду анализа: скалярные (для получения информации исключительно о гармонических составляющих) и векторные (для получения информации о гармонических и фазовых составляющих).
  • По диапазону частот: низкочастотные, широкополосные, работающие в оптическом диапазоне.

Последовательные анализаторы спектра считаются более распространенными. Они сканируют частотную полосу с помощью маломощного генератора электрических колебаний. Селективный усилитель промежуточной частоты последовательно выделяет спектральные составляющие, и их отклики воспроизводятся на экране. Анализаторы параллельного типа укомплектованы высокодобротными резонаторами, настроенными на определенные частоты. При одновременном воздействии сигнала каждый узкополосный фильтр выделяет по одной его составляющей, что позволяет вести параллельный анализ данных.

Основные характеристики

portativnyj-analizator-spektra-arinst-ssa-1.png

Спектроанализаторами часто измеряют частоту, мощность, шум, искажения, модуляцию спектра. Спектральный состав сигнала очень важен в системах с ограниченной по ширине полосой частот. Переданная мощность тоже играет значительную роль. Если этот показатель будет слишком маленьким, то звуковая волна не достигнет точки назначения. Слишком большие значения мощности быстро истощают запас аккумуляторов, повышают рабочую температуру системы, вызывают дополнительные помехи.

Оценка качества модуляции нужна для того, чтобы убедиться в корректности работы системы. При аналоговой модуляции измеряют уровни полосы боковых частот, заполнение полосы частот, коэффициент модуляции. При цифровой модуляции оценивают дисбаланс IQ, модуль вектора погрешности, зависимость погрешности от фазы времени. К основным характеристикам анализирующих приборов относят:

  • Разрешающую способность. Эта характеристика представляет собой минимальный интервал частот, при котором прибор выделит соседние составляющие спектра как отдельные линии, а затем сможет измерить их уровни. Разрешающая способность бывает динамической и статической.
  • Диапазон частот. Это частотный интервал, в котором возможен спектральный анализ. Диапазон в устройстве может быть разбит на поддиапазоны. Обычно в приборах предусмотрена возможность исследовать сигналы не по всему интервалу, а только в конкретной его части. Ее называют полосой обзора. Такой подход применяется для того, чтобы повысить точность анализа.
  • Время анализа. Обозначает скорость измерений. На него влияет динамическая разрешающая способность и время, необходимое для получения показаний с резонаторов.
  • Погрешность по частоте. Показывает с какой точностью устройство определяет диапазон между спектральными составляющими.
  • Погрешность по амплитуде. Зависит от инструментальной погрешности анализатора и сигнального спектра.

Виды анализаторов спектра

akip-4205-2.jpg

Все приборы можно поделить на низкочастотные, радиочастотные и оптические. Низкочастотные способны работать в диапазонах от нескольких герц до сотен килогерц. Радиочастотные работают с полосой до сотен гигагерц. Анализаторы спектра бывают:

  • Полосовыми. На дисплее устройства отображается множество полос, демонстрирующих уровень сигнала. В первых моделях такой техники использовались аналоговые фильтры. Полосовые анализаторы часто используют для настройки амплитудно-частотных характеристик акустических систем в театрах, на концертных площадках. В них для анализа сигнала применяется преобразование Фурье.
  • FFT-анализаторы. Они способны анализировать звуковые сигналы в режиме реального времени. Чтобы предупредить размытие тона по частоте при измерениях используются весовые окна.
  • Представляющие сигнал спектрограммой. Эти приборы позволяют визуально отслеживать изменения звуковой волны во времени. Время отображается по горизонтальной оси, частота – по вертикальной, а звуковую амплитуду обозначают отдельным цветом. Отсчет может быть разным.

Современные модели анализаторов поддерживают функции всех перечисленных выше типов приборов. Они также работают с аналоговыми и цифровыми фильтрами, что значительно расширяет сферу их применения.

Как выбрать анализатор спектра?

Оборудование подбирают исходя из поставленных задач. Основные правила выбора анализаторов:

  1. Определение класса устройства. Техника этого вида бывает бюджетной и премиальной. Дорогие спектроанализаторы работают с разными типами частот.
  2. Оценка необходимой точности и чувствительности измерений. Для некоторых видов работ нужны высокоточные и сверхчувствительные приборы, которые не могут быть бюджетными.
  3. Наличие/отсутствие возможности подключения дополнительных плат. Модульность позволяет в дальнейшем подключать к устройству новые измерительные приборы, повысить точность проводимого анализа.

Анализаторы с высокой точностью собирающие сведения об интенсивности отдельных гармоник применяют в электротехнических лабораториях. Звукорежиссерам из-за вида деятельности приходится пользоваться приборами для измерения низких частот. С их помощью можно определить степень разборчивости звука.

Что такое анализатор спектра? Что такое анализатор спектра? https://sernia.ru/ Анализатор спектра предназначен для измерения и визуализации сигнального спектра. В быту этот прибор не используется, но его часто можно встретить в лабораториях и на производст.

Органы чувств. Часть 1

Самые большие глаза, которые есть у ныне существующих животных — это глаза гигантских кальмаров, которые могут достигать полуметрового размера. И это неудивительно, ведь зрение — это важнейший способ восприятия окружающего нас мира, с помощью которого мы получаем 60-70% всей входящей информации. Мы можем любоваться красивым пейзажем, смотреть на дорогих нам людей, наслаждаться произведениями искусства, — и всё это благодаря зрительному анализатору, подробнее о котором поговорим в этой статье.

Общее строение анализатора

Анализатор — функциональная единица, отвечающая за восприятие и анализ сенсорной информации.

С помощью анализаторов или органов чувств мы взаимодействуем с окружающим нас миром. Каждый анализатор состоит из трех отделов:

1) Периферический отдел — это рецептор, он отвечает за восприятие и преобразование механических и химических сигналов внешнего и внутреннего мира в нервные импульсы.

2) Проводниковый отдел — это чувствительный нерв, он включает в себя чувствительные нейроны и проводящие пути от рецептора до коры полушарий большого мозга.

3) Центральный (корковый) отдел — это участки коры больших полушарий головного мозга, воспринимающие и обрабатывающие информацию от соответствующих рецепторов.

Рецептор

Рецептор — это специальная чувствительная клетка или чувствительное нервное окончание, которое воспринимает раздражение и преобразует его в нервный импульс.

В зависимости от расположения в организме рецепторы бывают:

  • Экстерорецепторы (от “экстеро” — снаружи) — расположены в коже, слизистых, органах чувств;
  • Интерорецепторы (от “интеро” — внутри) — расположены во внутренних органах;
  • Проприорецепторы — рецепторы опорно-двигательного аппарата (находятся в сухожилиях, суставах).
Только в коже насчитывается около 500 тысяч осязательных рецепторов. То есть на каждый квадратный сантиметр кожи приходится около 25 рецепторов. Если бы у нас не было столько рецепторов, мы бы просто не выжили: рецепторы постоянно предупреждают нас об опасностях.

Разные рецепторы реагируют на разные стимулы: на изменение давления, температуры, химического состава воздуха и т.д. В зависимости от природы воспринимаемых стимулов рецепторы подразделяются на:

  • Механорецепторы — рецепторы, реагирующие на какое-то механическое воздействие: тактильные, проприорецепторы, слуховые, вестибулярные, барорецепторы (на давление), волюморецепторы (на растяжение).

Например, закройте глаза и проведите пальцем по поверхности стола. Его гладкость или шероховатость, наличие или отсутствие узоров, — всё это воспринимают ваши механорецепторы.

  • Терморецепторы — рецепторы, реагирующие на изменение температуры: холодовые и тепловые.

А теперь заварите себе чай. Если вы попытаетесь взять кружку не за ручку, а целиком, то скорее всего вы обожжетесь и отодвинете ее куда подальше. Это работа терморецепторов.

  • Фоторецепторы — рецепторы, связанные с восприятием световых лучей: палочки и колбочки сетчатки.

Для знакомства с работой ваших фоторецепторов вам не нужно совершать какие-то особые действия: просто не закрывайте глаза. Абсолютно всё, что вы сейчас видите, — это результат работы колбочек и палочек.

  • Хеморецепторы — рецепторы, воспринимающие изменение химического состава: обонятельные, вкусовые, некоторые интерорецепторы.

Ваш чай еще не остыл? Пододвигайте кружку обратно: самое время чем-то подкрепиться! Отломите кусочек шоколадки и положите его в рот. Ощущаете приятную сладость? Поблагодарите свои хеморецепторы — восприятие вкуса возможно благодаря им .

Зрительный анализатор

Начиная изучение строения любого анализатора, следует отвечать на три вопроса:

  • Какая структура воспринимает изменение в окружающей среде?
  • Какая структура проводит нервный импульс?
  • Какая доля мозга обрабатывает информацию?

Отвечая на эти вопросы относительно зрительного анализатора, мы получим следующую картину:

  • Рецепторы сетчатки воспринимают сигналы окружающей среды (освещение, цвет, форму объектов) — это периферический отдел.
  • Зрительный нерв проводит нервный импульс от рецепторов к мозгу — это проводниковый отдел.
  • Зрительная кора в затылочной доле больших полушарий обрабатывает информацию — это центральный отдел.

Органы зрения состоят из глазного яблока и вспомогательного аппарата.

Вспомогательный аппарат глаза включает в себя:

  • Брови — защищают глаза от пота.
  • Ресницы — защищают глаза от пыли.
  • Веки — механическая защита и поддержание влажности.
  • Слезный аппарат — состоит из слезных желез, которые выделяют слезную жидкость, увлажняющую, промывающую и дезинфицирующую глаза и слезовыводящих протоков. Избыток слезной жидкости удаляется в носовую полость через слезный канал, расположенный во внутреннем углу глазницы.
  • Двигательный аппарат — прямые и косые мышцы, двигающие глазное яблоко.

Строение глаза

Глазное яблоко состоит из трех оболочек:

1) Белочная оболочка (склера) — это наружная оболочка, состоящая из соединительной ткани. Она выполняет функцию защиты глаза, а также придает ему форму. Спереди она переходит в прозрачную структуру — роговицу.

2) Сосудистая оболочка — это средняя оболочка, которая содержит кровеносные сосуды, питающие глазное яблоко. Спереди она переходит в радужку, в которой есть отверстие – зрачок. В зависимости от интенсивности освещения он меняет свои размеры.

3) Сетчатая оболочка — внутренняя оболочка, содержащая рецепторы, отвечающие за восприятие света и преобразование его в нервный импульс. В сетчатке выделяют два типа рецепторов:

  • Палочки — воспринимают свет в условиях сумеречного освещения, содержат пигмент родопсин.
  • Колбочки — воспринимают дневной свет и цвета при ярком освещении, содержат пигмент йодопсин.

В сетчатке выделяют два “пятна”:

  • Желтое пятно — место наибольшей концентрации колбочек. Здесь глаз обладает наибольшей остротой зрения и наилучшим восприятием цвета.
  • Слепое пятно – место выхода зрительного нерва из глазного яблока. Здесь отсутствуют палочки и колбочки.

Светопреломляющие структуры

Прежде чем свет достигнет сетчатки глаза, он должен пройти через несколько светопреломляющих структур:

  • Роговица — передняя прозрачная часть склеры, является первой линзой на пути световых лучей. Функция — механическая защита глаза и пропускание световых лучей.
  • Передняя камера глаза — пространство между роговицей и радужной оболочкой, заполненное прозрачной жидкостью — водянистой влагой.
  • Задняя камера глаза — пространство между радужной оболочкой и хрусталиком, заполненное прозрачной жидкостью — водянистой влагой.
  • Стекловидное тело — полость глаза между хрусталиком и глазным дном, заполненная прозрачным вязким гелем, поддерживающим форму глаза.
  • Хрусталик — прозрачная двояковыпуклая линза, которая может изменять свою кривизну и таким образом фокусировать световые лучи. Изменять кривизну хрусталика помогает ресничное тело (цилиарная мышца). Вот, как это происходит:

Заболевания и аномалии зрения

Из-за неправильного преломления световых лучей они могут фокусироваться не на сетчатке, из-за чего человек испытывает трудности:

Близорукость (миопия) – изображение фокусируется перед сетчаткой, из-за чего человек видит четко только предметы, расположенные вблизи. Причина — слишком длинное глазное яблоко или чересчур выпуклый хрусталик. Исправляется очками с двояковогнутыми линзами.

Дальнозоркость (гиперметропия) — изображение формируется за сетчаткой, из-за чего человек видит четко только предметы, расположенные вдалеке. Причина — слишком короткое глазное яблоко или чересчур уплощенный хрусталик. Исправляется очками с двояковыпуклыми линзами.

Астигматизм — вызван невозможностью схождения всех лучей в одну точку вследствие неодинакового преломления лучей в разных частях глаза, из-за чего изображение воспринимается нечетким. Исправляется очками со сфероцилиндрическими линзами.

В результате различных инфекций или других патологий могут возникать следующие дефекты:

Катаракта — оптический дефект, при котором происходит помутнение хрусталика. Развитию катаракты способствуют нарушение обмена веществ, сахарный диабет, авитаминоз и другие причины. Зачастую требуется оперативное вмешательство.

Конъюнктивит — воспаление слизистой оболочки глаза (конъюнктивы), которая покрывает глаза снаружи и заднюю поверхность век и секретирует жидкость, увлажняющую глаза. При этом заболевании глаза краснеют и слезоточат. Лечится с помощью противобактериальных или противовирусных, а также противоаллергических препаратов.

Бельмо — оптический дефект, при котором происходит помутнение роговицы. Часто является последствием предшествующих воспалительных процессов оболочек глаза.

Фактчек

  • Анализатор состоит из трех анатомически и функционально связанных между собой элементов: периферический, проводниковый и корковый отдел.
  • В составе зрительного анализатора выделяют: периферический отдел (рецепторы сетчатки), проводниковый отдел (зрительный нерв) и центральный отдел (затылочные доли больших полушарий).
  • Вспомогательный аппарат глаза включает в себя защитные приспособления (брови, ресницы, веки), слезный аппарат и двигательный аппарат (прямые и косые мышцы глаза).
  • Глазное яблоко состоит из трех оболочек — наружной волокнистой, сосудистой и внутренней сетчатой.
  • В состав сетчатки входят два типа рецепторов — палочки и колбочки.
  • Глазное яблоко содержит светопреломляющие структуры, при прохождении через которые луч света преломляется: роговицу, хрусталик, стекловидное тело и жидкости передней и задней камер глаза.
  • При близорукости изображение фокусируется перед сетчаткой, из-за чего человек хорошо видит вблизи.
  • При дальнозоркости изображение фокусируется за сетчаткой, из-за чего человек хорошо видит далекие предметы.

Проверь себя

Задание 1.

В какой отдел анализатора входит нерв?

  1. Периферический
  2. Проводниковый
  3. Корковый

Задание 2.

К каким рецепторам относятся слуховые рецепторы?

  1. Механорецепторы
  2. Терморецепторы
  3. Фоторецепторы
  4. Хеморецепторы

Задание 3.

Какие линзы нужны при близорукости?

  1. Двояковогнутые
  2. Двояковыпуклые
  3. Сфероцилиндрические

Задание 4.

Выберите все светопреломляющие структуры глаза:

  1. Слепое пятно
  2. Задняя камера
  3. Хрусталик
  4. Коблочки
  5. Все вышеперечисленные

Ответы: 1. — 2; 2. — 1; 3. — 1; 4. — 23.

Что опознает и анализирует сигнал

Параметры современных анализаторов спектра

Параметры современных анализаторов спектра

Анализатор спектра – это измерительный прибор, который используется для отображения и анализа сигнала в спектральной области. Помимо спектральных измерений, современные анализаторы предоставляют множество других функций, таких как определение параметров модуляции (векторный анализ сигналов), измерение фазовых шумов, измерение коэффициента шума, измерение гармонических и негармонических искажений и другие.

Анализаторы спектра используются на производстве, в конструкторских бюро и научно-исследовательских (R&D) центрах, в задачах тестирования телекоммуникационных систем, радиомониторинга и во многих других областях, где необходимы измерения радиочастотных сигналов и характеристик радиоэлектронных трактов и устройств.

К основным параметрам анализатора спектра относятся: диапазон рабочих частот, погрешность измерения амплитуды, погрешность измерения частоты, скорость анализа, средний отображаемый уровень шумов, динамический диапазон, точка компрессии, фазовый шум, интермодуляционные искажения, уровень паразитных спектральных компонент, полоса единичного анализа, разрешение по частоте.

Диапазон рабочих частот – это частотная область, в которой анализатор позволяет осуществлять анализ спектра с допустимыми погрешностями измерения уровня и частоты.

Для проведения измерений параметров устройств и радиочастотных трактов часто требуется анализатор с диапазоном частот, превышающим диапазон рабочих частот исследуемого устройства. Примером необходимости расширенного частотного диапазона является беспроводная связь. Некоторые из беспроводных стандартов требуют, чтобы измерения проводились до десятой гармоники. Например, при работе на частоте 900 МГц требуется анализатор, имеющий верхнюю границу диапазона частот 10*900 МГц = 9 ГГц.

Погрешность измерения амплитуды – погрешность, определяющая ошибку определения амплитуды спектральных компонент сигнала. Единица измерения – дБ. Может задаваться во всем диапазоне рабочих частот или отдельно по поддиапазонам. Определяется инструментальными погрешностями анализатора спектра.

Погрешность измерения частоты определяет ошибку измерения частоты спектральных компонент. Как правило, основной вклад в данную погрешность вносит относительная нестабильность частоты опорного генератора и разрешение по частоте (RBW). Погрешность отличается для встроенного и внешнего опорного генератора и в абсолютном выражении увеличивается с ростом частоты. Единица измерения – Гц либо в относительном выражении к частоте сигнала.

В процессе производства анализаторы спектра калибруются. При калибровке определяются ошибки измерений для различных частот и уровней и сохраняются в память конкретного анализатора. Эти ошибки учитываются в индицируемом уровне, таким образом точность измерений повышается.

Почти все анализаторы спектра обладают встроенным прецизионным источником, который обеспечивает опорный сигнал заданной частоты и амплитуды. Затем полагаются на относительную калибровку анализатора, переносящего абсолютную калибровку опорного сигнала на другие частоты и амплитуды.

Скорость анализа – определяется как величина, равная полоса обзора/время обзора. Единица измерения – Гц/с. Высокая скорость анализа позволяет увеличить производительность работы с прибором, а также более корректно отображать быстроменяющиеся сигналы, производить поиск редких сигналов.

Современные анализаторы как правило вычисляют спектр посредством быстрого преобразования Фурье (БПФ), что позволяет существенно увеличить скорость сканирования по сравнению с анализаторами спектра последовательного действия. В таких анализаторах на каждой частоте настройки гетеродина записывается временная выборка в полосе единичного анализа, и затем вычисляется спектр посредством БПФ во всей полосе единичного анализа. Такой метод позволяет также корректно отображать спектр нестационарных, меняющихся во времени сигналов, полоса которых не превышает полосу единичного анализа.

Таким образом, скорость анализа в современных анализаторах спектра определяется в основном полосой единичного анализа и скоростью перестройки синтезатора частот гетеродина.

Скорость анализа связана с разрешением по частоте – чем оно выше, тем меньше скорость. Это связано с ограниченной длиной БПФ и увеличением времени подсчета БПФ.

Средний отображаемый уровень шумов (DANL) – усредненная спектральная плотность собственных шумов прибора. Единица измерения – дБм/Гц. Определяет минимальную амплитуду входного сигнала, которую можно наблюдать и измерять при помощи анализатора спектра. Измеряется с подключенным ко входу анализатора терминатором 50 Ом при нормальных климатических условиях. Средний отображаемый уровень шумов, как правило, увеличивается с ростом частоты. Большинство современных анализаторов спектра имеет встроенный входной аттенюатор для наблюдения сигналов большой амплитуды, при включении входного аттенюатора DANL увеличивается на величину, равную ослаблению аттенюатора.

Динамический диапазон – разность между точкой компрессии по входу анализатора спектра и средним отображаемым уровнем шумов. Единица измерения – дБ/Гц. Определяет отношение максимальной амплитуды входного сигнала к минимальной, которые можно одновременно измерять при помощи анализатора спектра при фиксированном входном аттенюаторе.

Точка компрессии 1 дБ по входу – максимальный уровень входного сигнала, при котором ошибка измерения амплитуды сигнала за счет нелинейности трактов прибора достигает 1 дБ. Единица измерения – дБм. Определяет максимальную амплитуду сигнала, которую можно корректно измерять при помощи анализатора спектра. Измеряется при выключенном входном аттенюаторе, зависит от частоты. При включении входного аттенюатора точка компрессии увеличивается на величину, равную ослаблению аттенюатора.

Фазовый шум – спектральная плотность мощности фазовых флуктуаций, отображаемая анализатором спектра при подаче на его вход идеального монохроматического сигнала. Единица измерения – дБн/Гц на различных отстройках от частоты сигнала. На практике одним из методов измерений является подача на вход анализатора спектра сигнала с существенно меньшим уровнем фазовых шумов, чем собственные шумы анализатора. Фазовый шум является одной из важнейших характеристик анализатора спектра, определяющей минимальную амплитуду входного сигнала, которую можно наблюдать на малых отстройках от мощного мешающего сигнала, а также уровень спектральных искажений анализатора на небольших отстройках от входного сигнала.

Уровень паразитных спектральных искажений – уровень побочных спектральных компонент, вносимых анализатором спектра и отсутствующих во входном сигнале, относительно уровня входного сигнала. Единица измерения – дБн.

Полоса единичного анализа – полоса, в которой осуществляется одновременная обработка всех спектральных компонент анализатором спектра. Соответствует полосе БПФ. Измеряется в Гц. Если полоса сигнала превышает полосу единичного анализа и сигнал меняется во времени, спектр сигнала может отображаться анализатором спектра некорректно.

Разрешающая способность по частоте (RBW) – способность анализатора спектра различать близко расположенные по частоте спектральные компоненты и раздельно отображать их на экране. Измеряется в Гц.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *