Как определить систему заземления в частном доме
Перейти к содержимому

Как определить систему заземления в частном доме

  • автор:

Схема подключения заземления в загородном доме

Схема подключения заземления в загородном доме

Сегодня практически каждый загородный дом оснащен электрическими приборами. Безопасность их эксплуатации обеспечивается соединением установленного в помещениях электрооборудования с заземляющим устройством. Грамотно выполненное защитное заземление исключит вероятность поражения людей электрическим током и предотвратит выход из строя бытовой техники и сложных технических устройств от воздействия перенапряжений, если они защищаются УЗИП. Выбор схемы подключения зависит от различных факторов. В частном доме, в отличие многоквартирного, заземление можно сделать самостоятельно. Разобраться в вопросе его подключения поможет данная инструкция.

Основные элементы схемы подключения заземления загородного дома и правила по их выполнению

Схема подключения заземления в загородном доме выглядит следующим образом: электроприбор— розетка — электрический щит — заземляющий проводник — контур заземления — земля.

Подключение начинается с выполнения на придомовом участке заземляющего устройства в соответствие с правилами, определенными в главе 1.7 ПУЭ 7-го издания. Заземлитель представляет собой металлическую конструкцию, имеющую большую площадь контакта с землей. Предназначен для выравнивания разности потенциалов и уменьшения потенциала заземленного оборудования, в случае замыкания на корпус или появления избыточного напряжения в электросети. Конструкция и глубина его установки определяется исходя из сопротивления грунта на участке (например, сухой песок или влажный чернозем).

От выполненного на участке заземляющего устройства (заземления) прокладываем заземляющий проводник, который подключаем к главной заземляющей шине, с использованием болтового соединения, зажима или сварки. Выбираем проводник сечением не менее 6 мм 2 для меди и 50 мм 2 для стали, при этом он должен соответствовать требованиям к защитным проводникам, указанным в таблице 54.2 ГОСТ Р 50571.5.54-2013, а для системы ТТ иметь сечение не менее 25 мм 2 для меди. Если проводник голый и прокладывается в земле, то его сечение должно соответствовать приведенному в таблице 54.1 ГОСТ Р ГОСТ Р 50571.5.54-2013.

В электрощитке заземляющий проводник через шину заземления соединяется с защитными проводниками, проложенными к розеткам, имеющим заземляющий контакт и остальным электроприемникам в доме. В результате чего, каждый электроприбор оказывается подключенным к системе заземления.

Зависимость схемы подключения заземления от контура заземления

Если у столба линии электропередач выполнено повторное заземление, то схема подключения заземления в загородном доме выполняется по системам TN-C-S или TT. Когда состояние сетей не вызывает опасений, в качестве заземляющего устройства дома следует использовать повторное заземление линии и подключать дом в соответствии с системой заземления TN-C-S. Если воздушная линия старая, либо качество выполнения повторных заземлений подлежит сомнению, лучше выбрать систему ТТ и оборудовать индивидуальное заземляющее устройство на придомовом участке.

Для заземляющего устройства в первую очередь следует использовать естественные заземлители — сторонние проводящие части, имеющие непосредственный контакт с грунтом (водопроводы, трубы скважин, металлические и железобетонные конструкции загородного дома и прочее). (см. п.1.7.54, 1.7.109 ПУЭ 7-го издания).

При отсутствии таковых, выполняем искусственное заземляющее устройство, используя вертикальные или горизонтальные электроды, которые вкапываем в землю. Выбор конфигурации заземлителя главным образом от требуемого сопротивления и особенностей придомового участка.

При отсутствии таковых, выполняем искусственное заземляющее устройство, используя вертикальные или горизонтальные электроды, которые вкапываем в землю. Выбор конфигурации заземлителя главным образом от требуемого сопротивления и особенностей придомового участка.

Наиболее эффективен в использовании, если на вашем участке почва представлена суглинком, торфом, насыщенным водой песком, обводненной глиной. Стандартная длина стержней составляет от 1,5‑х до 3‑х м. Выбирая длину вертикальных электродов, исходим из водонасыщенности вмещающих пород на участке. Заглубленные грунт вертикальные заземлители объединяются горизонтальным электродом, например, полосой, а для минимизации экранирования располагаются на расстоянии, соразмерном длине самих штырей.

Конструкцию заземляющего устройства рекомендуют располагать на расстоянии одного метра от фундамента строения (см. п. 1.7.94 ПУЭ 7-го издания).

Зависимость схемы подключения от типа системы заземления

Заземление объектов жилого фонда выполняют по следующим системам: ТN (подсистемы TN-C, TN-S, TN-C-S) или ТТ. Первая буква в названии обозначает заземление источника питания, вторая – заземление открытых частей электрооборудования.

Последующие буквы после N указывают на совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников. S — нулевой рабочий (N) и нулевой защитный (РЕ) проводники разделены. С — функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (РЕN-проводник).

Электробезопасность обеспечивается полноценно, когда уменьшение сопротивления заземлителя не влечет за собой увеличения показателей тока замыкания на землю. Рассмотрим, как схема подключения заземления зависит от выполненной на объекте системы электрической сети.

Система заземления TN-S

Система TN-S

Рисунок 1. Система TN-S

На объектах, оборудованных электросетью по системе TN-S, нулевые рабочий и защитный проводники разделены по всей длине, и в случае пробоя изоляции фазы, аварийный ток отводится по защитному РЕ-проводнику. Устройства УЗО и дифавтоматы, реагирующие на появление утечки тока через защитный ноль, отключают сеть с нагрузкой.

Достоинством подсистемы заземления TN-S является надежная защита электрооборудования и человека от поражения аварийным током при пользовании электросетями. За счет чего данную систему относят к наиболее современной и безопасной.

Для выполнения заземления по системе TN-S, требуется прокладка от трансформаторной подстанции отдельного провода заземления к своему строению, что приведет к значительному удорожанию проекта. По этой причине, для заземления объектов частного сектора, подсистема заземления TN-S практически не используется.

Система заземления TN-C. Необходимость перехода на ТN-C-S

Система TN-С

Рисунок 2. Система TN-S

Заземление по системе TN-C наиболее распространено для старых построек жилого фонда. Преимуществом является экономичность и проста ее выполнения. Существенным недостатком — отсутствие отдельного проводника РЕ, что исключает наличие в розетках загородного дома заземления и возможности уравнивания потенциалов в ванной.

К загородным постройкам электрических ток подводится по воздушным линиям. К самому строению подходят два проводника: фазный L и совмещенный PEN. Подключить заземление можно, только при наличии в частном доме трехжильной проводки, что требует переделки системы TN-C на TN-C-S, путем разделения нулевого рабочего и нулевого защитного проводника в электрическом щите (см. п. 1.7.132 ПУЭ 7-го издания).

Подключение заземления по системе TN-C-S

Для подсистемы заземления TN-C-S характерно объединение нулевого рабочего и нулевого защитного проводников на участке от линий электропередач до ввода в здание. Заземление по данной системе достаточно простое в техническом исполнении, за счет чего рекомендуется для широкого применения. К недостатку можно отнести потребность в постоянной модернизации, во избежание обрыва PEN проводника, в результате чего электроприборы могут оказаться под опасным потенциалом.

Рассмотрим схему подключения заземления в загородном доме по системе TN-C-S на примере перехода к ней от системы TN-C.

Схема главного распределительного щита

Рисунок 3. Схема главного распределительного щита

Как уже отмечалось, для получения трехжильной проводки, необходимо произвести правильное разделение PEN проводника в распределительном щитке дома. Начинаем с того, что в электрощит устанавливаем шину с обеспечением прочной металлической связи с ним, и подключаем к этой шине идущий со стороны линии электропередач объединенный проводник PEN. Шину PEN соединяем перемычкой со следующей установленной шиной РЕ. Теперь шина PEN выступает в качестве шины нулевого рабочего проводника N.

Схема подключения заземления (переход с TN-C на TN-C-S)

Рисунок 4. Схема подключения заземления (переход с TN-C на TN-C-S)

Схема подключения заземления TN-C-S

Рисунок 5. Схема подключения заземления TN-C-S

Выполнив указанные подключения, соединяем распределительный щиток с заземлителем: от заземляющего устройства заводим проводна шину РЕ. Таким образом, в результате несложной модернизации, мы оснастили дом тремя отдельными проводами (фазным, нулевым защитным и нулевым рабочим).

Правилами устройства электроустановок требуется выполнение повторного заземления для РЕ — и РEN-проводников на вводе в электроустановки, с использованием, в первую очередь, естественных заземлителей, сопротивление которых при напряжении электросети 380/220 В должно быть не более 30 Ом (см. п. 1.7.103 ПУЭ 7-го издания).

Подключение заземления по системе TТ

Система TT

Рисунок 6. Система TT

Другим вариантом схемы является подключения заземления загородного дома по системе ТТ с глухозаземленной нейтралью источника тока. Открытые токопроводящие элементы электрооборудования такой системы подсоединены к заземляющему устройству, не имеющему электрической связи с заземлителем нейтрали источника питания.

При этом должно соблюдаться следующее условие: значение произведения величины тока срабатывания устройства защиты (Iа) и суммарного сопротивления заземляющего проводника и заземлителя (Rа) не должно превышать 50 В (см. п.1.7.59 ПУЭ). Rа Iа ≤ 50 В.

Для соблюдения этого условия “Инструкция по устройству защитного заземления и уравнивания потенциалов в электроустановках” И 1.03-08 рекомендует выполнять заземляющее устройство с сопротивлением 30 Ом. Данная система достаточно востребована на сегодняшний день и применяется для частных, преимущественно мобильных построек, при невозможности обеспечения достаточного уровня электробезопасности системой TN.

Заземление по системе TТ не требует разделения совмещенного PEN проводника. Каждый из подходящих к дому отдельных проводов подсоединяем к изолированной от электрощита шине. А сам PEN проводник, в таком случае, считаем нулевым проводов (нулем).

Схема подключения заземления по системе TT

Рисунок 7. Схема подключения заземления по системе TT

Схема подключения заземления и УЗО по системе TT

Рисунок 8. Схема подключения заземления и УЗО по системе TT

Как следует из схемы, системы TN-S и ТТ очень похожи между собой. Отличие состоит в полном отсутствии у ТТ электрической связи между заземляющим устройством и PEN проводником, что, в случае отгорания последнего со стороны источника питания, гарантирует отсутствие избыточного напряжения на корпусе электрических приборов. В этом и состоит очевидное преимущество системы ТТ, обеспечивающее более высокий уровень безопасности и надежности в эксплуатации. Недостатком ее использования можно назвать лишь дороговизну, поскольку для защиты пользователей при косвенном прикосновении, обязательна установка дополнительных устройств защитного отключения питания (УЗО и реле напряжения), что, в свою очередь, требует прохождение апробации и заверение специалистом энергонадзора.

Заключение

Схема заземления в общем виде представляет собой соединение ее элементов: электрооборудования, вводно-распределительного щита, заземляющего проводника РЕ, заземлителя.

Для установки заземляющего устройства в загородном доме необходимо разобраться в особенностях его подключения, в зависимости от следующих факторов:

  • способ питания электрической сети (воздушными линиями или кабелем от трансформаторной подстанции)
  • тип грунта на придомовом участке, где выполняется контур заземления.
  • наличие системы молниезащиты, дополнительных источников питания или специфического оборудования.

Выполняя подключение заземления самостоятельно, необходимо руководствоваться положениями раздела 1.7 Правил устройства электроустановок. При невозможности использования естественных заземлителей, выполняем заземляющее устройство с применением искусственных заземлителей.. Заземление частного дома может быть выполнено по двум системам: TN-C-S или ТТ. Наиболее широкое применение получила модернизированная система TN-C — TN-C-S, за счет простоты ее технического исполнения. Для обеспечения электробезопасности загородного дома по системе TN-C-S, требуется разделение PEN проводника, на нулевой рабочий и нулевой защитный проводники.

Выполнив контур заземления, необходимо проверить качество его монтажа, и произвести замеры сопротивления на соответствие нормам ПУЭ при помощи специальных приборов, для чего может потребоваться привлечение специалистов.

Полную инструкцию по заземлению и молниезащите для частного дома (в картинках) смотрите на отдельной странице.

Требуется консультация по организации заземления и молниезащиты для вашего объекта? Обратитесь в Технический центр ZANDZ.com!

Смотрите также:

  • Защита частного дома от перенапряжений
  • Молниезащита частного дома
  • Пример расчёта молниезащиты частного дома и бани
  • Видеозапись вебинара с профессором Э. М. Базеляном “Защищаем частный сектор”
  • Заземление для молниезащиты (требования, оборудование)

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается. В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется. На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Система заземления TN-C

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют. Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Система заземления TN-S

Система заземления TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

Система заземления TN-C-S

Система заземления TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

Система заземления TT

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Система заземления IT

Система заземления IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.

Смотрите также:

  • Вебинары с ведущими экспертами отрасли
  • Все для расчетов заземления и молниезащиты
  • Полезные материалы: статьи, рекомендации, примеры

Заземление частного дома. Зачем необходимо, в чем суть? Что такое заземлитель, контур заземления? Причем тут УЗО и обрыв нуля?

Заземление относится к одному из основных защитных мероприятий, обеспечивающих снижение напряжения прикосновения к электроустановке до безопасного уровня.

Физическая суть данного вида защиты заключается в обеспечении неразрывного электрического контакта между частями электроустановок, не находящимися под напряжением в нормальном режиме с заземляющим устройством. Под неразрывностью подразумевается отсутствие коммутационных аппаратов в цепи защитного нулевого провода.

Что такое заземлитель?

Основной частью заземляющего устройства является собственно заземлитель — это металлическая конструкция, находящаяся под землёй и обеспечивающая электрический контакт устройства с грунтом. Заземлители подразделяют на искусственные и естественные. К первым относятся конструкции, специально созданные для защитных целей и ни для чего, кроме этого не предназначенные. Естественными заземлителями считаются сооружения, также способные обеспечить электрический контакт с грунтом, но изначально предназначенные для других целей. Это могут быть подземные части строительных конструкций, разнообразных ограждений и т.п.

Самые популярные системы заземления

Популярные системы (см. ниже).

Вопрос о целесообразности или необходимости постройки собственного заземлителя в частном доме должен рассматриваться комплексно с учётом нескольких факторов, среди которых:

  • тип системы заземления, применяемой в питающей электросети;
  • надёжность линии электроснабжения;
  • дополнительные защитные меры, применяемые во внутренней электропроводке частного дома.

Основные системы

Главным критерием, по которому осуществляется классификация применяемых систем заземления, является режим нейтрали и нулевого защитного провода.

Обмотки трёхфазных трансформаторов на стороне 0,4 кВ (а это именно тот уровень напряжения, который поступает к массовому потребителю) соединяются в звезду. Такой вид соединения подразумевает объединение концов трёх обмоток в одну точку, которая и называется нейтралью. СтабЭксперт.ру напоминает, что, в зависимости от того, в каком из двух основных режимов функционирует нейтраль трансформаторной подстанции, она может быть:

  • глухо заземлённой, то есть, имеющей надёжный неразрываемый контакт с заземляющим устройством, расположенным на подстанции;
  • изолированной, характеризующейся отсутствием электрического контакта с заземлителем, либо соединением с ним через большое сопротивление.

В соответствии с общепринятой классификацией существует три основные системы:

  • TN — нейтраль глухо заземлена на стороне источника питания (на подстанции), открытые части электрооборудования (в том числе на стороне потребителя) соединены с нулевым защитным проводом;
  • TT — нейтраль так же глухо заземлена на подстанции, открытые части оборудования потребителя соединены с собственным заземляющим устройством;
  • IT — на подстанции нейтраль изолирована, а со стороны потребителя оборудование заземлено.

Наибольшее распространение имеет система TN, которая распадается на три разновидности, отличающиеся способом организации защитного нулевого провода:

TN-c

    TN-C — характеризуется совмещением рабочего и защитного нулевых проводов на всём протяжении;

TN-s

TN-S — в этой подсистеме защитный и рабочий нулевые провода разделены от заземлителя на подстанции до распределительного устройства потребителя;

TN-c-s

TN-C-S — разделение защитного и рабочего нулевых проводов происходит на некотором удалении от заземлителя на подстанции.

Примечание. Рабочий нулевой проводник обозначается буквой N, защитный нулевой провод — PE, в случае совмещения одним проводником этих двух функций, он обозначается PEN.

Таким образом, при трёхфазном питании к потребителю в зависимости от системы з/з приходит либо четыре провода (A, B, C, PEN) в случае подсистемы TN-C, либо пять (A, B, C, N, PE), при подсистеме TN-S или TN-C-S.

Читайте еще: как работает УЗИП для защиты от перенапряжения и для чего устанавливать дома?

ПУЭ

Строительство заземляющего устройства непосредственно на территории потребителя э/энергии является обязательным в случаях, когда используется система TT или IT. Это вытекает из самого определения этих систем.

Что касается подсистем семейства TN, «Правила Устройства Электроустановок» (ПЭУ) предписывают обязательное наличие заземлителя на стороне потребителя в следующих случаях (п.1.7.102):

  • если электропитание потребителя осуществляется воздушной линией электропередачи (ЛЭП) или ответвлением от неё, имеющими длину более 200 м;
  • если в электроустановках потребителя используются автоматические средства защиты от косвенного прикосновения, производящие отключение питания.

Примечание. Повторным заземлением нулевого провода называют з/з, выполненное на стороне электроустановок потребителя при наличии первичного зазем-ля на питающей подстанции.

Поскольку в правилах речь идёт именно о PEN-проводе, можно сделать вывод, что данное требование относится только к подсистеме TN-C. То есть, буква правил непосредственно не требует обустройства повторного заземляющего устройства в случаях, когда нулевой провод имеет явное разделение на N и PE – проводники (TN-S и TN-C-S).

Влияние на уровень электробезопасности

Поражение человека или животного электрическим током происходит вследствие прямого или косвенного прикосновения. Прямым называется прикосновение к токоведущим частям электроустановки, электроприбора, находящимся под напряжением (оголённые провода, шины и т.п.). Косвенное прикосновение заключается в непосредственном контакте с частью оборудования или прибора, которая в нормальном режиме не находится под напряжением, а оказалась под его воздействием в результате нарушения изоляции, то есть вследствие повреждения оборудования. Защитой от прямого прикосновения служит сама конструкция электроустановки, электроприбора или устройства, делающая невозможным случайное прикосновение к токоведущим частям. В частности, прямому прикосновению препятствуют кожухи и корпуса электрооборудования, в том числе бытовых электроприборов – холодильников, стиральных машин и т.п. В то же время, корпуса бытовой электротехники любого вида могут оказаться под напряжением вследствие нарушения внутренней изоляции. Наверняка многие знакомы с иногда возникающим ощущением пощипывания или удара током при прикосновении мокрыми руками к корпусу стиральной машины или электроплиты. Этот факт должен настораживать, так как указывает на то, что изоляция нарушена, а эффективная защита от этой угрозы отсутствует, или не работает. Современное бытовое электрооборудование предназначено для подключения к трёхпроводным розеткам, к которым кроме фазного и рабочего нулевого подведён еще защитный нулевой провод (PE). Вывод вилки прибора, предназначенный для соединения через розетку с магистралью PE, объединён с корпусом электроприбора. Такое подключение препятствует появлению фазного напряжения на наружных частях устройств, вызывая в этих случаях короткое замыкание и отключение электропитания в доме. На практике же внутренняя разводка многих жилых помещений выполнена по старинке в двухпроводном варианте, то есть, без провода PE или PEN. При подключении бытовой техники к двухконтактным розеткам защита от косвенного прикосновения отсутствует (как сейчас принято говорить — от слова «совсем»). Выход один – выполнять монтаж электропроводки тремя проводами в соответствии с современными требованиями.

Причем тут УЗО?

УЗО

Следующим шагом на пути повышения уровня безопасности является установка специальных устройств защитного отключения (УЗО), принцип действия которых основан на фиксации токов утечки, возникающих при нарушении внутренней изоляции электроприборов. Для их функционирования также необходимо наличие отдельного PE-провода. Так выглядит УЗО. Принцип действия УЗО основан на сравнении токов в фазном и рабочем нулевом проводах. При снижении уровня изоляции, возникает ток утечки, протекающий через корпус бытовой техники, защитный контакт розетки в PE-провод. СтабЭксперт.ру напоминает, что в этом случае возникает разность токов фазы и рабочего нуля, на что и реагирует УЗО. Таким образом, УЗО определяет начальную стадию деградации изоляции, благодаря чему производит отключение заблаговременно. При отсутствии УЗО отключение автоматического выключателя происходит только по факту короткого замыкания, как было сказано выше. Недостатки такой системы очевидны и заключаются в следующем:

  • при замыкании фазного провода на корпус прибора возникают перегрузки всей внутренней электропроводки в результате короткого замыкания;
  • на начальных стадиях повреждения изоляции токовая защита не срабатывает, поэтому возможна длительная работа неисправного оборудования, при которой существует вероятность поражения человека электрическим током.

Обрыв нуля

  • условий для срабатывания токовых защит не создается, так как ток не протекает ввиду отсутствия нуля;
  • УЗО при его наличии также не срабатывает;
  • при одновременном прикосновении к корпусу повреждённого прибора и любому естественному заземляющему устройству (трубы отопления, водоснабжения, канализации и т.п.), человек оказывается под воздействием смертельного фазного напряжения.

Контур заземления

Для обустройства защиты прежде всего необходимо определить подходящее место для монтажа заземляющего контура – т.е. совокупности соединённых между собой заземлителей, образующих некоторую геометрическую фигуру.

Какой материал разрешен?

  • сталь чёрная;
  • сталь, покрытая защитным слоем цинка;
  • медь.

Сечение

Установлены следующие ограничения по сечениям и размерам для различных материалов.

Профили из чёрной стали. Прутки круглого сечения для вертикальных элементов заземлителей должны иметь диаметр не менее 16 мм, при использовании их в качестве горизонтальных заземлителей – не менее 10 мм. Профили прямоугольной и угловой формы с площадью поперечного сечения от 100 мм2 и толщиной стенки от 4 мм. Трубы из чёрной стали используются с диаметром не менее 32 мм с толщиной стенки от 3,5 мм.

Оцинкованная сталь. Диаметр вертикальных элементов круглого сечения должен составлять 12 мм и более, то же для горизонтальных конструкций – от 10 мм.

Для прямоугольного профиля установлена минимальная площадь поперечного сечения 75 мм2 при толщине стенки не менее 3 мм.

Могут применяться оцинкованные трубы с минимальным диаметром 25 мм и толщиной стенки не менее 2 мм.

Медь. Для медного прямоугольного профиля достаточной площадью сечения считается 50 мм2 со стенкой, имеющей толщину от 2 мм. Медный кругляк может использоваться для заземлителей при диаметре сечения от 12 мм.

Также может использоваться медный многопроволочный канат, имеющий общую площадь сечения от 35 мм2, при этом диаметр каждой проволоки должен составлять не менее 1,8 мм.

Что такое штыри заземления?

В большинстве случаев заземлитель выполняется при помощи металлических штырей – электродов, забиваемых в грунт с последующим их соединением между собой металлическим профилем. После сооружения конструкцию соединяют с вводно-распределительным устройством частного дома посредством кабеля или металлического профиля.

Глубина забивания штырей-электродов зависит от глубины промерзания грунта и его насыщенности водой. При более высоком залегании грунтовых вод требуется меньшая глубина расположения электродов. Контур з/з размещается на расстоянии от дома не менее 1 м, дальше 10 м его также как правило, не оборудуют.

Какой формы должен быть контур?

Электроды обычно размещаются в ряд или образуют некоторую геометрическую фигуру. Такой фигурой может быть треугольник, квадрат или прямоугольник. Это определяется размерами и формой площадки, отведённой для постройки заземляющего устройства. Представляет определённый интерес вариант расположения контура вокруг дома, по его периметру. Это может быть удобным при необходимости впоследствии выполнить монтаж заземляющей полосы внутри отдельных помещений, например в гараже, мастерской и т.п.

Безусловным чемпионом по частоте применения является контур, имеющий форму равностороннего треугольника, в вершинах которого забиваются электроды, соединяющиеся между собой стальным профилем.

Монтаж

Учитывая опыт монтажников, занимающихся постройкой контуров, можно рекомендовать следующую последовательность действий при выполнении этой работы:

  • выкапывается траншея в виде треугольника со стороной 3 метра, либо прямую траншею длиной 4-5 метров. Ширина траншеи может быть от 30 до 50 сантиметров, глубина от полуметра до метра;
  • если выбрана форма треугольника, в его вершины забиваются электроды круглого или углового профиля. Длина электродов – 2,5-3 метра. Если грунт не позволяет забить штыри на такую глубину, отверстия под них можно пробурить;
  • в случае линейного контура забивают 4-5 электродов с расстоянием между ними порядка метра;
  • концы забитых в грунт электродов соединяются между собой путём приваривания стального профиля;
  • соединение контура с шиной PE в домовом распределительном устройстве осуществляется стальной полосой, приваренной к элементам заземлителя.

Видео

Примечание. При использовании в качестве электродов углового профиля, для удобства забивания в грунт его можно заострить, сделав на конце угловой срез болгаркой.

Готовые комплекты

Чтобы ничего не придумывать и не рисковать, разработаны специальные комплекты, а так же в рознице есть все компонеты по-отдельности.

Фото Назначение компонента
Электрод Электрод из нержавеющей стали (он же – заземлитель, он же – штырь заземления), ГОСТ Р 50571.5.54-2011 и МЭК 60364-5-54:2002
Муфта Муфта для соединения электродов
Ударная головка Ударная (или удароприменая) головка, служит для передачи ударного усилия, при вбивании заземлителя
Наконечник Наконечник для прохождения грунта
Зажим Зажим для подключения проводника к электроду
Лента Гидроизоляционная лента для защиты болтовых соединений от коррозии (в грунте)
Паста Графитовая токопроводящая паста для контактных соединений

Стоимость подобного минимального набора варьируется от ~4 000 руб. до ~65 000 руб., все зависит от материала и перечня.

Сопротивление

Главным требованием, предъявляемым к заземляющему устройству, является сопротивление заземления. Правилами нормируется, как общее сопротивление растеканию всех повторных заземлителей, установленных на одной линии электропередач, так и сопротивление растеканию отдельного повторного з/з устройства.

Так, для воздушной линии электропередач 380 вольт (0,4 кВ) общее сопротивление повторных заземлителей не должно быть более 10 Ом. Сопротивление отдельного повторного элемента для линии 0,4 кВ не может быть больше 30 Ом.

Замеры и протокол

Замеры выполняют специализированные организации, имеющие соответствующие лицензии. После их проведения заказчику выдаётся протокол на специальном бланке с печатью организации, выполняющей работы.

Для полноценной защиты от косвенного прикосновения, кроме выполнения заземления частного дома необходимо установить устройство защитного отключения (УЗО).

Далее:

  • Все про молниезащиту зданий.
  • Плюсы и минусы тиристорных стабилизаторов напряжения.

Системы заземления

Обустройство систем заземления необходимо при монтаже и эксплуатации сетей освещения, различных электроустановок и электрооборудования. В соответствии с нормативными документами, при эксплуатации электрооборудования может использоваться только искусственные системы заземления, спроектированные в соответствии с особенностями объекта или электроустановки.

Обозначения в системах заземления

В обозначениях систем используются латинские буквы:

  • T (земля);
  • N (нейтраль или функциональный ноль);
  • I (изолированный);
  • C (соединение защитного и функционального «ноля»);
  • S (раздельное применение во всей сети защитного и функционального «ноля»).

В обозначениях систем первая буква определяет тип заземления источника питания, вторая буква указывает тип заземления открытых компонентов электроприемника.

Правильно спроектированное и реализованное заземление является одним из базовых условий обеспечения электробезопасности объектов, на которых эксплуатируется бытовое или промышленное электрическое оборудование. При выполнении заземления необходимо руководствоваться требованиями ПУЭ (Правила устройства электроустановок).

Две категории систем заземления

В соответствии с ПУЭ все виды заземления разделяются на две категории. В первую входят системы, в которых нейтраль изолирована (пример – IT). Во вторую — системы, в которых нейтраль является глухозаземленной (пример — TN и ее подсистемы: TN-S, TN-C, TN-C-S).

TN: система заземления с глухо заземленной нейтралью

В данной системе защита производится путём соединения глухо заземленной нейтрали с неизолированными компонентами электроустановки. В системе заземления TN проводником является РЕ, то есть «нулевой» проводник. То есть при её обустройстве корпусные экраны и детали электропотребителей, проводящие ток, должны быть подключены к общему «нулю» — проводнику, который соединен с нейтралью.

Функциональный «ноль» в данном случае обозначается буквой «N», а совмещение «нулевого» функционального и защитного проводника – «PEN». У данной системы заземления есть три подвида TN-C-S, TN-C и TN-S. Отличия между ними заключаются в разных способах подключения проводников «PE» и «N».

В этой системе не применяется метод заземления нейтрали при помощи дугогасящего реактора, который в других типах систем используется в качестве компенсаторного устройства.

TN-C: система с рабочим и защитным «нулём» в одном проводнике

Стандартная TN-C система заземления – это 4-проводная схема подачи тока с «нулевым» и тремя фазными проводами. Данная система подразумевает совмещение нулевых рабочих и защитных проводника в одно на всём протяжении. Другими словами, в TN-C PEN-проводник общий, он применяется и для подключения приёмников тока и для «зануления» их корпусов (открытых токопроводящих компонентов).

«Зануление» корпуса нужно на случай повреждения изоляции либо обрыва фазного провода, при которых может произойти его замыкание на корпус. При такой схеме это приведет к срабатыванию автоматики, которая отключит напряжение.

У TN-C есть недостатки. Наиболее критичным минусом этой системы заземления является отсутствие схем защиты при отгорании или механическом повреждении (обрыве) «нуля». В такой ситуации на корпусах оборудования и устройств создаётся напряжение, которое представляет угрозу для жизни. Еще один недостаток заключается в том, что в ней не используется заземляющий проводник PE — то есть розетки, которые к ней подключены, не заземлены, что приводит к необходимости занулять любое подключаемое электрооборудование.

Важно! Тем, кто проживает в доме, в котором используется система заземления TN-C, нужно знать – при вынужденном присоединении к нулю бытовых приборов в ванных комнатах нельзя применять дополнительные линии уравнивания потенциалов.

На текущий момент TN-C морально устарела. Она до сих пор используется в частных домах и зданиях, построенных в начале и середине XX века. Также она может использоваться там, где степень риска незначительна – к примеру, в уличном освещении.

Система заземления TN-C

TN-S: эффективно, но дорого

TN-S, в сравнении с системой заземления TN-C представляет собой более современную, эффективную и безопасную систему, в которой глухозаземленная нейтраль трансформатора (либо генератора) применяется для подключения проводников с «нулём» на стороне источника тока. При её использовании исключен риск возникновения высокого напряжения на корпусах электрического оборудования – даже в том случае, если линия питания будет повреждена.

Между тем есть две причины, из-за которого TN-S не получила широкого распространения в России. Первая – российская энергетика в основном ориентирована на 4-проводные схемы 3-фазного электроснабжения. Вторая причина заключается в дороговизне использования системы заземления TN-S.

При монтаже в ходе подключения трех фаз нужно будет использовать 5 проводов для присоединения оборудования к источнику питания. При однофазном подключении потребуется 3 провода. Из-за распространенности в России 4-проводных схем для трех фаз применение TN-S будет нецелесообразно, так как в этом случае нужно будет протягивать от трансформаторной подстанции отдельную линию, состоящую из 5 проводов.

В новой редакции ПУЭ, а также в ГОСТ Р50571 есть указание о монтаже системы TN-S на объектах, требующих высокой степени электробезопасности. Также в данных регламентирующих документах предписывается ее обустройство при строительстве и капитальном ремонте зданий.

Система заземления TN-S

TN-C-S: соединение комбинированного «PEN» с глухозаземленной нейтралью

TN-C-S представляет собой распространенную систему заземления, которая обеспечивает более высокий уровень электробезопасности, чем TN-C и при этом менее затратна, чем TN-S. Принцип этого типа подключения – в подаче питания с применением комбинированного «PEN», который соединяется с глухозаземленной нейтралью. При входе в здание он разделяется на защитный ноль («PE») и проводник, который на стороне электропотребителя выполняет функцию «N», то есть рабочего ноля.

В соответствии с требованиями ПУЭ (пункт 1.7.135), в точке, где разделяется рабочий и защитный ноль, должны быть использованы шины или зажимы для соединенных проводников. Комбинированный «PEN» нужно подключать к шине или зажиму защитного ноля «РЕ».

Согласно пункту 1.7.135 ПУЭ В месте разделения PEN-проводника на нулевой защитный (PE) и нулевой рабочий (N) проводники необходимо предусмотреть отдельные зажимы или шины для проводников, соединенные между собой. PEN-проводник питающей линии должен быть подключен к зажиму или шине нулевого защитного — проводника. При этом сечение перемычки, расположенной между шинами, не должно быть меньше сечения комбинированного PEN.

Плюсы: система заземления TN-C-S надежнее TN-C: она исключает риск обрыва нуля, при этом затраты на её обустройство будут лишь немногим выше, чем на эту устаревшую систему.

Минусы: отгорание или излом провода PEN на протяженности линии от объекта до подстанции приводит к образованию на поверхности электроприборов напряжения, опасного для жизни. Из-за этого при обустройстве системы TN-C-S необходимо обеспечить надежную защиту от повреждения комбинированной линии PEN.

Система заземления TN-C-S

Система заземления TT: новинка в российской энергетике

Данная система подразумевает «глухое» заземления нейтрали линии питания. При этом заземление открытых частей электроустановки, способных проводить ток, производится с использованием устройства, которое «автономно» от глухозаземленной нейтрали. При 3-фазном подключении напряжение передается по 4 проводам, в которых четвертый представляет собой «N», то есть функциональный ноль. На стороне электропотребителя монтируется заземлитель (чаще всего модульно-штыревой). Затем к заземлителю производится соединение проводников защитного ноля, которые соединяются с корпусными компонентами.

На территории РФ система заземления TT разрешена сравнительно недавно. Она получила широкое распространение в воздушных линиях электропередач, которые используются для электроснабжения сельской местности, дачных, коттеджных поселков и других загородных поселений. Еще одно направление использования этой системы – это линии электроснабжения объектов временной мобильной торговли в городских условиях.

ТТ стала удачной заменой системы TN-C-S, которая в указанной области применения не гарантирует надежность защиты комбинированного «PEN».

При применении такого типа заземления необходимо обустройство защиты от попадания молнии. Также нужно использовать специальную автоматику, обеспечивающую защитное отключение. Еще один момент – в ПУЭ есть указание по использованию системы заземления ТТ – подача тока на электроустановки с её применением практикуется только тогда, когда не может быть обеспечена электробезопасность в системе TN.

Система заземления TT

IT: система заземления с изолированной нейтралью «I»

Двумя основными особенностями этой системы является наличие линии защитного заземления («Т») и автономной нейтрали «I». При использовании IT для передачи тока от источника к электропотребителю используется минимум проводов. При этом необходимо обеспечить надежность присоединения к заземлителю всех компонентов корпусов электрооборудования, способных проводить ток. Еще одним нюансом системы заземления IT является отсутствие функционального ноля «N» на линии источник тока – электропотребитель.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *