Что создает переменное магнитное поле
Перейти к содержимому

Что создает переменное магнитное поле

  • автор:

Электрическое и магнитное поле: в чем различия

Термином «поле» в русском языке обозначают очень большое пространство однородного состава, например, пшеничное или картофельное.

В физике и электротехнике его используют для описания различных видов материи, например, электромагнитной, состоящей из электрической и магнитной составляющих.

Электрическое и магнитное поле заряда

Электрический заряд связан с этими формами материи. Когда он неподвижен, то вокруг него всегда есть электрическое поле, а при движении образуется еще и магнитное.

Представление человека о природе электрического (более точное определение — электростатического) поля сложилось на основе исследований опытным путем его свойств, ибо другого метода изучения пока не существует. При этом способе выявлено, что оно воздействует на движущиеся и/или неподвижные электрические заряды с определенной силой. По измерениям ее величины оценивают основные эксплуатационные характеристики.

Электрическое поле заряда

  • вокруг электрических зарядов (тел или частиц);
  • при изменениях магнитного поля, как, например, происходит во время перемещения электромагнитных волн.

Изображают его силовыми линиями, которые принято показывать исходящими из положительных зарядов и оканчивающимися на отрицательных. Таким образом, заряды являются источниками электрического поля. По действию на них можно:

  • выявить наличие поля;
  • ввести калиброванную величину для измерения его значения.

Для практического использования выбрана силовая характеристика, называемая напряженностью , которая оценивается по действию на единичный заряд положительного знака.

Магнитное поле

Оно действует на:

  • электрические тела и заряды, находящиеся в движении с определённым усилием;
  • магнитные моменты без учета состояний их движения.

Магнитное поле создается:

  • прохождением тока заряженных частиц;
  • суммированием магнитных моментов электронов внутри атомов или других частиц;
  • при временном изменении электрического поля.

Его тоже изображают силовыми линиями, но они замкнуты по контуру, не имеют начала и конца в противоположность электрическим.

Взаимодействие электрического и магнитного полей

Первое теоретическое и математическое обоснование процессов, происходящих внутри электромагнитного поля, выполнил Джеймс Клерк Максвелл. Он представил систему уравнений дифференциальной и интегральной форм, в которых показал связи электромагнитного поля с электрическими зарядами и протекающими токами внутри сплошных сред либо вакуума.

В своем труде он использовал законы:

  • Ампера, описывающие протекание тока по проводнику и создание вокруг него магнитной индукции;
  • Фарадея, объясняющего возникновение электрического тока от воздействия переменного магнитного поля на замкнутый проводник.

Электрический ток создает магнитную индукцию

Переменный поток магнитного поля создает электричсекое поле

Труды Максвелла определили точные соотношения между проявлениями электрических и магнитных полей, зависящих от распределенных в пространстве зарядов.

Упрощенное изображение электромагнитного поля

После публикации работ Максвелла прошло уже много времени. Ученые постоянно изучают проявления опытных фактов между электрическими и магнитными полями, но даже сейчас не особо получается выяснить их природу. Результаты ограничиваются чисто практическим применением рассматриваемых явлений.

Объясняется это тем, что с нашим уровнем знаний можно только строить гипотезы, ибо пока мы способны лишь предполагать что-то. Ведь природа обладает неисчерпаемыми свойствами, которые еще предстоит много и длительно изучать.

Сравнительная характеристика электрического и магнитного полей

Взаимную связь между полями электричества и магнетизма помогает понять очевидный факт: они не обособленны, а связаны, но могут проявляться по-разному, являясь единым целым — электромагнитным полем.

Если представить, что в какой-то точке пространства создано неоднородное поле электрического заряда, неподвижное относительно поверхности Земли, то определить вокруг него магнитное поле в состоянии покоя не получится.

Электричсекое и ммагнитное поле по отношению к системе отсчета

Если же наблюдатель начнет перемещаться относительно этого заряда, то поле станет меняться по времени и электрическая составляющая образует уже магнитную, которую сможет увидеть своими измерительными приборами настойчивый исследователь.

Аналогичным образом эти явления проявятся тогда, когда на какой-то поверхности расположен неподвижный магнит, создающий магнитное поле. Когда наблюдатель станет перемещаться относительно него, то он обнаружит появление электрического тока. Этот процесс описывает явление электромагнитной индукции.

Поэтому говорить о том, что в рассматриваемой точке пространства имеется только одно из двух полей: электрическое или магнитное, не имеет особого смысла. Этот вопрос надо ставить применительно к системе отсчета:

  • стационарной;
  • подвижной.

Другими словами, система отсчета влияет на проявление электрического и магнитного поля таким же образом, как рассматривание пейзажей сквозь светофильтры различных оттенков. Изменение цвета стекол влияет на наше восприятие общей картинки, но, оно, даже если принять за основу естественный свет, создаваемый проходом солнечных лучей через воздушную атмосферу, не даст истинной картины в целом, исказит ее.

Значит, система отсчета является одним из способов изучения электромагнитного поля, позволяет судить о его свойствах, конфигурации. Но, она не обладает абсолютной значимостью.

Индикаторы электромагнитных полей

Электрически заряженные тела используют в качестве индикаторов, указывающих на наличие поля в определенном месте пространства. Ими, для наблюдения электрической составляющей, могут использоваться наэлектризованные мелкие кусочки бумаги, шарики, гильзы, «султаны».

Исследование электростатического поля

Рассмотрим пример, когда по обе стороны плоского наэлектризованного диэлектрика расположены на свободном подвесе два индикаторных шарика. Они будут одинаково притягиваться к его поверхности и вытянутся в единую линию.

На втором этапе между одним из шариков и наэлектризованным диэлектриком поместим плоскую металлическую пластину. Она не изменит действующие на индикаторы силы. Шарики не поменяют свое положение.

Третий этап эксперимента связан с заземлением металлического листа. Сразу только как это произойдет, индикаторный шарик, расположенный между наэлектризованным диэлектриком и заземленным металлом, изменит свое положение, сменив направление на вертикальное. Он перестанет притягиваться к пластине и будет подвержен только гравитационным силам тяжести.

Этот опыт показывает, что заземленные металлические экраны блокируют распространение силовых линий электрического поля.

В этом случае индикаторами могут выступать:

  • стальные опилки;
  • замкнутый контур с протекающим по нему электрическим током;
  • магнитная стрелка (пример с компасом).

Стальные опилки: индикаторы магнитного поля

Принцип распределения опилок из стали вдоль магнитных силовых линий является наиболее распространенным. Он же заложен в работу магнитной стрелки, которая, для уменьшения противодействия сил трения, закрепляется на остром наконечнике и этим получает дополнительную свободу для вращения.

Законы, описывающие взаимодействия полей с заряженными телами

Прояснению картины процессов, происходящих внутри электрических полей, послужили опытные работы Кулона, осуществляемые с точечными зарядами, подвешенными на тонкой и длинной нити из кварца.

Опыты кулона

Когда к ним приближали заряженный шарик, то последний влиял на их положение, заставляя отклоняться на определенную величину. Это значение фиксировалось на лимбе шкалы специально сконструированного прибора.

Таким способом были выявлены силы взаимного действия между электрическими зарядами, называемые электрическим, Кулоновским взаимодействием. Они описаны математическими формулами, позволяющими проводить предварительные расчеты проектируемых устройств.

Закон Кулона

Здесь хорошо работает закон, описанный Ампером на основе взаимодействия проводника с током, размещенного внутри магнитных силовых линий.

Закон Ампера

Для направления действия силы, осуществляющей воздействие на проводник с протекающим по нему током, применяют правило, использующее расположение пальцев на левой руке. Четыре соединенных вместе пальца необходимо расположить по направлению тока, а силовые линии магнитного поля должны входить в ладонь. Тогда оттопыренный большой палец укажет направление действия искомой силы.

Графические изображения полей

Для их обозначения на плоскости чертежа используются силовые линии.

Для обозначения линий напряженности в этой ситуации используют потенциальное поле, когда имеются неподвижные заряды. Силовая линия выходит из положительного заряда и направляется в отрицательный.

Примером моделирования электрического поля может служить вариант размещения кристаллов хинина в масле. Более современным способом считается использование компьютерных программ графических проектировщиков.

Они позволяют создавать изображения эквипотенциальных поверхностей, судить о численном значении электрического поля, анализировать различные ситуации.

Моделирование электрического поля

У них для наглядности отображения применяются линии, характерные для вихревого поля, когда они замкнуты единым контуром. Приведенный ранее пример со стальными опилками наглядно отображает это явление.

Их принято выражать векторными величинами, имеющими:

  • определённое направление действия;
  • значение силы, рассчитываемое по соответствующей формуле.

Вектор напряженности электрического поля у единичного заряда можно представить в форме трехмерного изображения.

Напряженность электрического поля

  • направлена от центра заряда;
  • имеет размерность, зависящую от способа вычисления;
  • определяется бесконтактным действием, то есть на расстоянии, как отношение действующей силы к заряду.

Напряженность, возникающую в катушке, можно рассмотреть на примере следующей картинки.

Напряженность магнитного поля катушки

Силовые магнитные линии в ней от каждого витка с внешней стороны имеют одинаковое направление и складываются. Внутри межвиткового пространства они направлены встречно. За счет этого внутреннее поле ослаблено.

На величину напряженности влияют:

  • сила проходящего по обмотке тока;
  • количество и плотность намотки витков, определяющих осевую длину катушки.

Повышенные токи увеличивают магнитодвижущую силу. Кроме того, в двух катушках с равным числом витков, но разной плотностью их намотки, при прохождении одного и того же тока эта сила будет выше там, где витки расположены ближе.

Таким образом, электрическое и магнитное поля имеют совершенно определенные отличия, но являются взаимосвязанными составляющими единого общего — электромагнитного.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Магнитное поле

Физика

Магни́тное по́ле, магнитная составляющая электромагнитного поля ; физическое поле , оказывающее механическое силовое воздействие на движущиеся электрические заряды , на проводники , по которым течёт электрический ток , на постоянные магниты и другие физические объекты, обладающие магнитным моментом . Изменяющееся во времени магнитное поле создаёт переменное электрическое поле , которое, в свою очередь, создаёт переменное магнитное поле, что обеспечивает существование электромагнитных волн , в которых переменные электрические и магнитные поля взаимно поддерживают друг друга.

Термин «магнитное поле» ввёл в 1845 г. М. Фарадей , автор концепции физического поля – ключевого понятия современной физики, являющегося, по мнению А. Эйнштейна , самым важным физическим открытием со времён создания И. Ньютоном основ классической механики .

Силовой характеристикой магнитного поля является вектор магнитной индукции B , \boldsymbol, B , с помощью которого определяются механические силы и вращательные моменты сил, действующие со стороны магнитного поля на движущиеся заряды, токи и тела, обладающие магнитным моментом. Магнитное поле также характеризуется вектором напряжённости магнитного поля H ; \boldsymbol; H ; индукция и напряжённость магнитного поля, находящегося в изотропной среде, связаны выражением: H = B μ 0 μ , \boldsymbol = \frac<\boldsymbol><\mu_0 \mu>, H = μ 0 ​ μ B ​ , где μ \mu μ – магнитная проницаемость среды, μ 0 \mu_0 μ 0 ​ – магнитная постоянная .

Источниками магнитного поля являются проводники с током, движущиеся заряды, физические объекты и тела, обладающие магнитным моментом . Для измерения характеристик магнитного поля используют различные магнитометры .

В технических приложениях магнитные поля по величине магнитной индукции B B B подразделяют на слабые (до 0,05 Тл), средние (0,05–4 Тл), сильные (4–100 Тл) и сверхсильные (свыше 100 Тл). Слабые и средние магнитные поля широко используются в радиотехнике и электронике , электротехнике и электроэнергетике . Их получают с помощью постоянных магнитов и электромагнитов (в том числе сверхпроводящих ).

Сильные магнитные поля используются в мощных электротехнических и электрофизических установках, в том числе в ускорителях заряженных частиц , в разрабатываемых энергетических установках управляемого термоядерного синтеза (проект ITER, International Termonuclear Energy Reactor). Для получения постоянного сильного магнитного поля (до 20–30 Тл) применяют сверхпроводящие соленоиды с дополнительным теплоотводом. Более сильные магнитные поля (до 160 Тл) удаётся получать только в течение коротких промежутков времени с помощью импульсных соленоидов, через которые пропускается мощный разрядный ток короткого замыкания , или с помощью магнитокумулятивных (взрывомагнитных) генераторов (до 1 0 3 10^3 1 0 3 Тл), в которых начальное магнитное поле очень быстро сжимается внутри проводящей оболочки, многократно возрастая в силу сохранения магнитного потока Φ = B S \Phi = \boldsymbol Φ = BS при взрывном уменьшении площади поперечного сечения S S S проводящей оболочки, заполненной магнитным полем.

Наблюдаемые природные магнитные поля имеют разные величины: магнитное поле Земли на её поверхности составляет около 5 ⋅ 1 0 – 5 5 \cdot 10^ 5 ⋅ 1 0 –5 Тл, магнитное поле Юпитера – порядка
1 0 – 3 10^ 1 0 –3 Тл, магнитное поле внутри солнечных пятен составляет доли Тл, отдельные звёзды обладают магнитным полем с индукцией порядка нескольких Тл. Наибольшими магнитными полями обладают звёзды, находящиеся на конечном этапе своей эволюции, когда их размеры значительно уменьшаются (магнитокумулятивный механизм усиления магнитного поля). У белых карликов наблюдаются магнитные поля порядка 1 0 3 10^3 1 0 3 Тл, у нейтронных звёзд – порядка 1 0 7 10^7 1 0 7 Тл; у четырёх нейтронных звёзд (трёх в нашей Галактике и одной в её спутнике – Большом Магеллановом Облаке ) обнаружены магнитные поля порядка 1 0 11 10^ 1 0 11 Тл.

Опубликовано 20 января 2023 г. в 19:36 (GMT+3). Последнее обновление 20 января 2023 г. в 19:36 (GMT+3). Связаться с редакцией

1)Переменное магнитное поле создаёт в окружающем его пространстве вихревое электрическое поле;

2)Переменное электрическое поле создаёт в окружающем его пространстве вихревое магнитное поле.

Возникающие вихревые поля тем больше, чем быстрее изменяются порождающих их поля.

Электрические и магнитные поля существуют одновременно, взаимно порождают и поддерживают друг друга. По отдельности электрическое и магнитное поля существуют только по отношению к определённым системам отсчёта.

Совокупность неразрывно связанных друг с другом изменяющихся электрического и магнитного полей представляет собой электромагнитное поле.

Электромагнитное поле, распространяющееся в вакууме или в какой-либо среде с течением времени с конечной скоростью, называется электромагнитной волной.

Из теории Максвелла следовало, что электромагнитные волны распространяются с конечной скоростью, определяемой диэлектрической и магнитной проницаемостью среды.

Максвелл показал, что скорость распространения электромагнитных волн в вакууме равна скорости света.

Свойства электромагнитных волн.

1.При распространении электромагнитных волн в каждой точке пространства происходят периодически повторяющиеся изменения электрического и магнитного полей, которые удобно изображать в виде колебаний векторов напряжённости электрического поля Е и индукции магнитного поля В в каждой точке пространства.

2.Электромагнитная волна – поперечная, так как вектора Е и В перпендикулярны скорости. Векторы Е и В образуют с вектором скорости правовинтовую систему.

3.Колебания векторов Е и В в каждой точке пространства происходят в одинаковых фазах и по двум взаимно перпендикулярным направлениям.

4.Электромагнитная волна является носителем энергии. Перенос энергии осуществляется в направлении распространения волны.

5.Для электромагнитных волн, как и для волн любой природы, свойственны явления преломления, отражения, интерференция, дифракция, прямолинейное распространение в однородной среде.

Инфракрасные, ультрафиолетовые и рентгеновские лучи, их природа и свойства, практическое применение.

Классификация электромагнитных волн по частотам или длинам волн называется шкалой электромагнитных волн.

Оптическая область включает инфракрасный, видимый и ультрафиолетовый диапазоны.

К инфракрасной области относится излучение с длиной волны от нескольких миллиметров до 0,75 мкм.

Инфракрасные лучи испускают все тела в природе. Этот вид излучения связан с тепловым движением молекул и атомов. При повышении температуры тела энергия его инфракрасного излучения быстро возрастает.

Свойства: лучи невидимы, хорошо поглощаются телами, изменяют электрическое сопротивление тел, действуют на фотоматериалы, хорошо проходят через туман.

Применение: фотографирование в темноте, для сушки материалов, пищевых продуктов, в приборах ночного видения, в тепловизорах, позволяющих определять качество теплоизоляции строений, в военной технике для наведения ракет на цель.

Ультрафиолетовая область от 0,4 мкм до 0,05 мкм.

Источниками ультрафиолетовых лучей являются Солнце, космос, лазеры, газоразрядные лампы.

Свойства: действуют на фотоэлементы, фотоумножители, люминесцентные вещества, оказывают бактерицидное действие, поглощаются озоном, обладают лечебным свойством в умеренных дозах, невидимы.

Применение: люминесценция в газоразрядных лампах, в автоматике, в медицине, в лазерах.

Рентгеновским излучением называют электромагнитные волны с длиной волны от 0,01 мкм до 0,001 нм.

Источниками являются трубка Рентгена, лазеры, солнечная корона, небесные тела.

Свойства: обладают большой проникающей способностью, вызывают люминесценцию, действуют на фотоэмульсию, ионизируют газы, лучи невидимы.

Применение: рентгеноструктурный анализ, рентгенотерапия, рентгенография.

Переменное магнитное поле

Переменное магнитное поле 1

Магнитное поле всегда возникает вокруг движущихся электрических зарядов, или при взаимодействии тел, обладающих магнитным моментом. Поскольку современные электрические сети используют в основном переменный электрический ток, то магнитное поле изменяет своё значение и направление периодически. Таким образом, можно сказать, что большинство электрических сетей являются источниками переменного магнитного поля.

Величина магнитного поля характеризуется векторной величиной – магнитной индукцией (B).

Переменное магнитное поле

Движущиеся в магнитном поле частицы, движутся под действией силы Лоренца. Именно этой силой часто характеризуют магнитную составляющую в электромагнитном поле. Она характеризует напрваление движенися конкретных частиц. Под действием электромагнитного поля на проводник, в нём возникает ток, величина которого определяется законом Ампера.

Переменное магнитное поле используется в промышленности для различных технологических и производственных целей, а также нашло широкое применение в медицине, биологии и других областях.

Для размагничивания ферромагнетиков используется затухающее переменное магнитное поле. При этом необходимо учитывать, что чем больше частота переменного магнитного поля, тем меньше глубина его проникновения в материал. Так, в сплошную сталь переменное магнитное поле частотой 10-ти герц проникает примерно на 10 миллиметров. Для размагничивания объёмных сплошных деталей используются переменные магнитные поля с небольшой частотой в единицы герц, но большой мощности. Скорость затухания частоты в таких устройствах регулируется контроллером.

Применение магнитных полей в промышленности

Сепарация взвешенных жидкостей

В нефтедобывающей промышленности применяются переменные магнитные поля. С их помощью выполняется обработка тонкодисперсной эмульсии. Эта эмульсия является продуктом смешения нефти с водой, что входит в технологический цикл нефтедобычи. При отстаивании эмульсии происходит разделение слоёв воды и нефти, но это достаточно длительный и, следовательно, дорогостоящий процесс. Воздействие переменным магнитным полем на эмульсию позволяет существенно ускорить процесс разделения сред.

Переменные магнитные поля способны отказывать влияние на клетки и микроорганизмы, которые являются устойчивыми к другим типам воздействия (УФ-облучению, антибиотикам, вирусам, фагам и т.д.). Таким образом удаётся бороться с некоторыми враждебными человеку микроорганизмами.

В основе работы многих физиотерапевтических аппаратов лежит переменное магнитное поле, особенно СВЧ-диапазона. Такие устройства сейчас разделяют на две категории в зависимости от используемой длины волны: “ДЦВ-терапия” и “микроволновая терапия”. Наиболее разработана на сегодняшний день теория о тепловом влиянии СВЧ-полей на организмы.

Под воздействием переменного магнитного поля высоких частот происходит периодическая переориентация электрических диполей в организме, что вызывает нагрев тканей. При этом ткани, на которые будет оказываться наибольшее влияние можно выбрать в зависимости от используемой частоты переменного магнитного поля.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *