Когда появились первые электростанции в мире
Перейти к содержимому

Когда появились первые электростанции в мире

  • автор:

ИСТОРИЯ ПОЯВЛЕНИЯ ЭЛЕКТРИЧЕСТВА В МИРЕ, В РОССИИ

Современная жизнь немыслима без радио и телевидения, телефонов и телеграфа, всевозможных осветительных и нагревательных приборов, машин и устройств, в основе которых лежит возможность использования электрического тока. В конце XIX века по миру, в том числе России, прокатилась волна открытий, связанных с электричеством. Пошла цепная реакция, когда одно открытие открывало дорогу для последующих открытий на многие десятилетия вперёд.

6 ЭТАПОВ ИЗ «ОЧЕРКОВ ПО ИСТОРИИ ЭЛЕКТРОТЕХНИКИ» О.Н. ВЕСЕЛОВСКОГО И Я. А. ШНЕЙБЕРГА:

Этап 1. Становление электростатики (до 1800 года)

С чего же началась история электричества? Еще в Древней Греции Фалес Милетский (624 – 548 до н. э.) заметил электрические свойства натёртого янтаря, который мог притягивать кусочки ткани, нити, бумаги. Янтарь греки назвали «электрон», что означает «притягивающий к себе».

До 1800 года происходили первые наблюдения электрических и магнитных явлений, были созданы первые электростатические машины и приборы, разработаны первые теории электричества.

Этап 2. Закладка фундамента электротехники, ее научных основ (1800-1830).

Вольтов столб и батарея В. Петрова

В это время электричество уже стало предметом научного изучения. Луиджи Гальвани в конце 18 века случайно заметил что мышцы лягушки сокращаются находясь поблизости от электрической машины.

Начало этого периода ознаменовано созданием «вольтова столба» в 1799 году. Вольтов столб — это первый источник непрерывного электрического тока, сыгравший громадную роль в развитии науки об электричестве. Долгое время он оставался самым распространенным источником электрического тока. Вольтов столб позволил вести систематическое изучение электрических токов и находить им практическое применение.

Отечественный ученый Василий Петров глубоко изучил труды Вольта и сделал перевод их на русский язык. Петров изучал различные приборы, построенные по принципу Вольтова столба. Он проводил многочисленные опыты с различными материалами пластин и вариантами электролитов. Он решил создать очень мощный источник электричества. В 1802 году на деньги медицинской академии Петров начал создание самой большой гальванической батареи.

Василию Петрову удалось создать большую батарею, основными элементами которой стали 4200 медных и цинковых дисков размером 35 миллиметров. В качестве электролита использовался нашатырный спирт. Батарея была способна давать электрический ток напряжением до 1700 Вольт. С помощью батареи удалось получить мощный электрический разряд, электрическую дугу. Изобретения Василия Петрова дали начало развитию многих направлений в науке и технике.

Петров фактически был первым, кто провел широкие исследования по теории электролиза как процесса выделения на электродах частей электролита под воздействием электрического тока. Ему удалось выяснить, что различные химические вещества и соединения ведут себя различным образом под действием электричества. Он провел электролиз некоторых веществ. Он установил, что для разных веществ требуется разное напряжение для осуществления процесса электролиза. Так для разложения воды требуется низкое напряжение в несколько вольт, а для электролиза масла необходимо около 1000 Вольт.

Василий Петров установил связь между эффективностью электролиза и температурой окружающей среды. При более высокой температуре электролиз шел активнее. А аккумуляторная батарея давала больше тока.)

Важнейшими достижениями этого периода является открытие основных свойств электрического тока, законов Ампера, Ома, создание прообраза электродвигателя, первого индикатора электрического тока, установление связей между электрическими и магнитными явлениями.

Этап 3. Зарождение электротехники (1830—1870 гг.)

Телеграф и Майкл Фарадей

Первый электромагнитный телеграф создал российский учёный Павел Львович Шиллинг в 1832 году. Телеграфы показали свою важность в передаче быстрых сообщений особенно во время военных действий.

Самым знаменательным событием этого периода явилось открытие М. Фарадеем явления электромагнитной индукции, создание первого электромашинного генератора.

Майкл Фарадей родился 22 сентября 1791 года в семье кузнеца. Денег не хватало, поэтому уже в 13 лет Майкл, оставив школу, начал работать рассыльным в лондонском книжном магазине, стал (там же) учеником переплётчика.

Фарадей так и не сумел получить систематическое образование, но рано проявил любознательность и страсть к чтению. В магазине было немало научных книг; в позднейших воспоминаниях Фарадей особо отметил книги по электричеству и химии, причём по ходу чтения он сразу начал проводить простые самостоятельные опыты.

цикл публичных лекций в Королевском институте знаменитого химика и физика, первооткрывателя многих химических элементов Гемфри Дэви. Майкл не только с интересом выслушал, но и подробно записал и переплёл четыре лекции Дэви, которые послал ему вместе с письмом с просьбой взять его на работу в Королевский институт. Этот, как выразился сам Фарадей, «смелый и наивный шаг» оказал на его судьбу решающее влияние. пригласил 22-летнего юношу на освободившееся место лаборанта Королевского института.

Большие заслуги: Открыл электромагнитную индукцию, лежащую в основе современного промышленного производства электричества и многих его применений. Создал первую модель электродвигателя. Среди других его открытий — первый трансформатор, химическое действие тока, законы электролиза, действие магнитного поля на свет, диамагнетизм. Первым предсказал электромагнитные волны. Фарадей ввёл в научный обиход термины ион, катод, анод, электролит, диэлектрик, диамагнетизм, парамагнетизм и другие. Фарадей — основоположник учения об электромагнитном поле.

Разрабатываются разнообразные конструкции электрических машин и приборов, создаются первые источники электрического освещения, первые электроавтоматические приборы, зарождается электроизмерительная техника. Однако широкое практическое применение электрической энергии было невозможно из-за отсутствия экономичного электрического генератора. В 1847 году Герман Гельмгольц математически обосновал закон сохранения энергии, показав его всеобщий характер.

Однако широкое практическое применение электрической энергии было невозможно из-за отсутствия экономичного электрического генератора.

Этап 4. Становление электротехники как самостоятельной отрасти техники (1870—1890 гг.)

Старинная динамо-машина и Фонарь и держатель для электрических свечей Яблочкова

В 1867 году Вернер фон Сименс проектирует динамомашину. Его основная идея – нужно использовать собственный ток, который генерируется при движении.

Создание первой динамомашины открывает новый этап в развитии электротехники, которая становится самостоятельной отраслью техники. В связи с развитием промышленности, ростом городов возникает острая потребность в электрическом освещении, начинается строительство «домовых» электрических станций, вырабатывающих постоянный ток. Электрическая энергия становится товаром, и все более остро ощущается необходимость передачи электроэнергии на значительные расстояния. Решить эту проблему на базе постоянного тока было нельзя из-за невозможности трансформации постоянного тока.

Значительным стимулом к, внедрению переменного тока явилось изобретение «электрической свечи» П. Н. Яблочковым. В 1878 году на улицах Парижа впервые вспыхнул ослепительный «русский свет» – дуговые лампы конструкции Павла Николаевича Яблочкова. Однако однофазные двигатели были непригодны для целей промышленного электропривода. Одновременно разрабатываются способы передачи электрической энергии на большие расстояния посредством значительного повышения напряжения линий электропередач. Идея П. Н. Яблочкова о централизованном производстве и распределении электроэнергии претворяется в жизнь, начинается строительство центральных электростанций переменного тока. Однако развивающееся производство требовало комплексного решения сложнейшей научно-технической проблемы: экономичной передачи электроэнергии на дальние расстояния и создания экономичного и надежного электрического двигателя, удовлетворяющего требованиям промышленного электропривода. Эта проблема была успешно решена на основе многофазных, в частности трехфазных систем.

Этап 5. Становление и развитие электрификации (с 1891 г.)

Михаил Осипович Доливо-Добровольский является создателем техники трёхфазных переменных токов и первым, кто на базе этой техники сделал возможным передачу электрической энергии с места её производства на практически произвольно большое расстояние к месту потребления. После ряда изысканий он построил в 1888 г. первый трёхфазный генератор переменного тока. Триумф системы трёхфазного тока относится к 1891 г., когда на Франкфуртской электротехнической выставке было произведено генеральное испытание этой системы в виде передачи электроэнергии от Лауффенского водопада во Франкфурт на Майне (расстояние между ними — 175 км). Успех М. О. Доливо-Добровольского превзошёл все самые смелые ожидания, и трёхфазный переменный ток стал с этого времени всеми признаваться и постепенно занял доминирующее положение в электротехнике.

Война токов — серия событий, связанных с внедрением конкурирующих систем передачи электроэнергии в конце 1880-х — начале 1890-х годов. Н. Тесла и Т. Эдисон. Пренебрежительное и недоверчивое отношение к технике переменных токов было тогда характерным для подавляющего большинства электротехников. Трехфазная система оказалась наиболее рациональной, так как имела ряд преимуществ, как перед однофазными цепями, так и перед другими многофазными системами.

С этого времени начинается бурное развитие электрификации: строятся мощные электростанции, возрастает напряжение электропередач, разрабатываются новые конструкции электрических машин, аппаратов и приборов. Электрический двигатель занимает господствующее положение в системе промышленного привода. Процесс электрификации постепенно охватывает все новые области производства: развивается электрометаллургия, электротермия, электрохимия. Электрическая энергия начинает все более широко использоваться в самых разнообразных отраслях промышленности, на транспорте, в сельском хозяйстве и в быту.

Этап 6. Зарождение и развитие электроники (первая четверть XX в.)

ВЭФ первым на территории СССР начал выпуск микро-ЭВМ. VEF Mikro 1025

Рост потребности в постоянном токе (электрохимия, электротранспорт и др.) вызвал необходимость в развитии преобразовательной техники, что привело к зарождению, а затем бурному развитию промышленной электроники.

Электротехника становится базой для разработки автоматизированных систем управления энергетическими и производственными процессами. Создание разнообразных электронных, в особенности микроэлектронных устройств позволяет коренным образом повысить эффективность автоматизации процессов вычислений, обработки информации, осуществлять моделирование сложных физических явлений, решение логических задач и др. при значительном снижении габаритов, устройств, повышении их надежности и экономичности.

Значительный прогресс в электронике наметился после создания больших интегральных схем (БИС), быстродействие их измеряется миллиардными долями секунды, а минимальные размеры составляют 2—3 мкм. Внедрение БИС привело к созданию микропроцессоров, осуществляющих цифровую обработку информации по программе, и микроЭВМ.

Быстрое развитие микроэлектроники обусловило возникновение и заметный прогресс новой области науки и техники — информатики. Уже в начале 80-х гг. как в нашей стране, так и за рубежом стали изготовлять микропроцессоры и микроЭВМ в одном кристалле. Все это дает огромный эффект в повышении надежности, снижении габаритов и потребляемой энергии микроэлектронных устройств, используемых в различных производственных процессах, автоматизированных систем управления, на транспорте, в бытовых устройствах.

Как рождались электростанции

Как рождались электростанции

В 70-х годах позапрошлого столетия люди ещё не умели передавать электроэнергию на дальние расстояния. Производить её приходилось там же, где использовали: рядом со зданиями-потребителями. Прошли годы, прежде чем инженеры поняли, что выгоднее строить электростанции ближе к источнику энергии, и главное – создали технологии для централизованного производства электричества.

Домовые станции

Во второй половине XIX века изобретателям удалось создать первые генераторы, способные непрерывно вырабатывать электрический ток. Одновременно начал возникать спрос на электроэнергию: одна за другой появились русская дуговая лампа Яблочкова и лампа накаливания Эдисона, перевернувшие представление о системах освещения. Это, в свою очередь, породило потребность в специальных фабриках, которые могли бы снабжать электричеством сразу несколько устройств.

Однако такие фабрики были далеки от электростанций в современном их понимании. Дело в том, что в 70-х – начале 80-х годов позапрошлого столетия не существовало технологий по передаче электроэнергии на дальние расстояния, и место производства электроэнергии не было отделено от места потребления. Станции по выработке электроэнергии называли «домовыми», что соответствовало их назначению: обеспечивать электричеством несколько ближайших домов. По сути, это были блок-станции. Впервые они появились во Франции для освещения Парижской оперы. В России первой установкой подобного рода стала станция для освещения Литейного моста в Петербурге, созданная в 1879 году при участии Яблочкова.

На пути создания первых «электрических фабрик» стояли сложности как технического, так и общественно-политического характера. К первым относилась необходимость отдельно устанавливать генераторы для дуговых ламп, требовавших точной регулировки, и отдельно – для ламп накаливания. Оба типа осветительных приборов часто встречались в пределах одной улицы и требовали электричества разного качества. А вторая проблема состояла в том, что общественность протестовала против прокладки воздушных линий, портивших городской пейзаж. Из-за этого власти многих городов требовали ограничиваться кабелями, что, в свою очередь, создавало неудобства при перекапывании улиц. Все эти сложности с радостью подхватывали и сильно преувеличивали газовые компании, стремительно терявшие свои позиции в сфере уличного освещения.

Строить множество блок-станций было не только хлопотно, но и дорого. Всё более целесообразной казалась организация централизованного производства электричества. Единственными массовыми потребителями на тот момент были системы освещения, в основном представленные лампами накаливания Эдисона, и это определило тот факт, что первые электростанции работали на постоянном токе.

Первая Нью-Йоркская

Коммерческую привлекательность централизованной выработки первыми оценили американские предприниматели. В начале 1880-х годов несколько финансистов США, вдохновлённые ажиотажем вокруг ламп накаливания, приняли решение о строительстве первой электростанции на постоянном токе. Они заключили соглашение с Edison Illuminating Company и в кратчайшие сроки возвели электростанцию на Пёрл-стрит в центре Нью-Йорка. На станции было установлено шесть генераторов мощностью около 90 кВт, электроэнергия подавалась потребителям на площади 2,5 квадратных километра.

В 1890 году станция полностью сгорела, от её здания ничего не осталось. Но конструкция первой ТЭС ещё не раз воспроизводилась при сооружении новых станций – настолько хорошо и практично она была спроектирована. Генераторы станции соединялись непосредственно с двигателем и имели искусственное охлаждение; напряжение регулировалось автоматически; подача топлива в котельную обеспечивалась механизмами; удаление золы и шлака также было автоматизированным.

В России первые городские электростанции появились во второй половине 1880-х годов. В Петербурге было основано «Общество электрического освещения 1886 года», объединившее несколько маленьких электростанций в центре российской столицы и построившее две новые – у Казанского собора и на Инженерной площади. У каждой из этих станций мощность едва превышала 200 кВт.

В Москве городская центральная электростанция впервые была построена в 1888 году и получила название Георгиевской в честь переулка, в котором располагалась (сейчас на этом месте, в том же здании, находится Новый Манеж). Мощность станции составляла всего 100 кВт, вырабатываемая на ней электроэнергия направлялась по подземным кабелям к ближайшим улицам, к Большому и Малому театрам, к зданию МГУ на Моховой. В 1897 году Георгиевская станция была закрыта, так как не могла обеспечить в разы увеличившийся спрос; её заменила более мощная Центральная электростанция на Раушской набережной.

Как увеличить радиус

Установив больше генераторов и проложив толстые провода, инженеры первых электростанций всё же не смогли решить проблему территориальной привязки выработки к потребителю. Уровень допустимых потерь для сетей постоянного тока обеспечивался только при достаточно высоком напряжении и, как следствие, на небольшом радиусе передачи. Это заставляло строить станции непосредственно в центре городов, что, в свою очередь, порождало новые проблемы – затруднялось обеспечение электростанций топливом и водой. Кроме того, участки земли в центре города были дороги, а как только компания заявляла о намерении построить электростанцию, их цена и вовсе взлетала до небес. Производство электроэнергии становилось слишком затратным.

Иногда электрическим компаниям приходилось идти на нестандартные решения. Например, в Петербурге станции, снабжавшие электроэнергией Невский проспект, размещались на закреплённых у причалов Мойки и Фонтанки баржах.

Способ увеличить расстояние между станцией и потребителем искали сразу по нескольким направлениям. Сначала была предпринята попытка изменить потребителя, а именно – понизить напряжение электрических лампочек. Это давало слишком незначительный эффект, и идея распространения не получила. Затем пробовали изменить схему сети – перейти от двухпроводной системы передачи электроэнергии к многопроводной. Наиболее востребованной оказалась схема с тремя проводами, предложенная одновременно английским физиком Гопкинсоном и Эдисоном. Она позволила увеличить радиус энергоснабжения до 1,2 км при сохранении уровня напряжения в сети. Дополнительным положительным эффектом была экономия меди за счёт уменьшения сечения проводов. Известный немецкий изобретатель Сименс предложил пятипроводную схему, но она не прижилась, так как напряжение в ней вырастало до опасных пределов.

Третьим вариантом стало использование аккумуляторных батарей – они устанавливались непосредственно рядом с потребителем и позволяли несколько увеличить число принимающих устройств. Такой вариант был выбран, например, для энергоснабжения ГУМа (на тот момент – Верхние торговые ряды), до которых Георгиевская ТЭС без аккумуляторов «недотягивала».

От постоянного к переменному

Несмотря на все ухищрения инженеров, рост спроса на электроэнергию значительно опережал возможности электростанций, работавших на постоянном токе. Вскоре стало очевидно, что решить задачу централизованного электроснабжения под силу только переменному току. Осуществить передачу электроэнергии в сети переменного тока на расстояние позволило создание трансформатора.
Первая городская электростанция переменного тока появилась в Лондоне в 1884 году, на ней были установлены два генератора и два трансформатора Голяра и Гиббса. В России крупнейшие станции переменного тока были построены в конце 1880-х – начале 1890-х годов. Первую из них ввели в Одессе в 1887 году, и она снабжала потребителей на расстоянии 2,5 км. Оборудование этой станции было настолько совершенным по тем временам, что даже с учётом поставок угля из Англии она вырабатывала электроэнергию в разы дешевле, чем более поздние станции Москвы и Петербурга.

Царскосельская ТЭС была введена чуть позже одесской станции, также в 1887 году, и протяжённость её сетей составила уже 64 км. Царское Село считается первым европейским городом, полностью перешедшим на электрическое освещение.

Первые электростанции переменного тока были однофазными, что ограничивало их применение только системами освещения. Подлинное развитие централизованное производство электроэнергии получило с созданием полноценных трёхфазных схем. В 1889 году русский изобретатель Доливо-Добровольский запатентовал конструкцию трёхфазного трансформатора и уже в 1891 году на Международной технической выставке во Франкфурте-на-Майне продемонстрировал, как переменный ток может преодолеть десятки километров. От небольшой ГЭС в местечке Лауфен, отстоящем от Франкфурта на 170 км, электроэнергия, дважды трансформируясь, передавалась по трёхпроводной сети к принимающим устройствам на Международной выставке. Опыт поразил современников и окончательно утвердил пальму первенства за переменным током. День, когда Доливо-Добровольский осуществил лауфен-франкфуртскую передачу, считается началом всемирной электрификации.

Дальше и мощнее

Создание высоковольтных сетей переменного тока дало толчок к стремительной централизации выработки. Расчёты показывали, что строить мощные электростанции вблизи угольных месторождений либо источников воды и затем передавать электроэнергию по сетям высокого напряжения гораздо выгоднее, чем создавать множество мелких ТЭС и ГЭС в городах. Крупные станции, снабжавшие электричеством промышленный и густонаселённые районы, стали называть районными (русская аббревиатура – ГРЭС).

Первая районная электростанция, так же как некогда первая городская, была построена в США. Ею стала Ниагарская ГЭС мощностью 37 МВт, запущенная в 1896 года. Россия ввела первую относительно мощную ГЭС в 1903 году; станция располагалась на реке Подкумок недалеко от Ессентуков и обеспечивала электроэнергией основные города района Минеральных Вод. Крупная тепловая районная станция появилась в России в 1914 году в Ногинске, она работала на торфе и снабжала электричеством московских потребителей.
Дальнейшее развитие электроэнергетики в стране шло по пути всё большей централизации: мощные электростанции вытесняли менее эффективные блок-станции. Так постепенно образовалась привычная нам энергосистема, основу которой составляют крупные ГРЭС, ТЭС, ГЭС и АЭС.

Источники:
Веселовский О. Н., Шнейберг Я. А. Очерки по истории электротехники.
Шухардин С. Техника в её историческом развитии.

Первые гидроэлектростанции

Первая электростанция мощностью всего в несколько киловатт для питания системы освещения завода была сооружена в конце XIX века под руководством бельгийско-французского изобретателя Зеноба Грамма.

В 70-80 гг. XIX в. каждый более или менее солидный завод, дом, или даже улица, имели свой источник электроэнергии.

Первая электростанция (блок-станция) в России была построена на Сормовском машиностроительном заводе для питания осветительных установок в 1876 г.

Первая блок-станция в Петербурге была сооружена в 1879 г. при участии П. Яблочкова для освещения Литейного моста.

В 1879 г. была построена первая электростанция в США в г. Сан-Франциско на 30 кВт.

Первые центральные станции возникли уже в 80-х годах XIX в.

Они были более целесообразны и более экономичны, так как снабжали электричеством сразу много предприятий. В то время массовыми потребителями электроэнергии были источники света – дуговые лампы и лампы накаливания.

Первая в мире центральная станция была пущена в работу в 1882 г. в Нью-Йорке, она имела мощность 500 кВт.

В Москве первая центральная электростанция на 400 кВт (Георгиевская) на угольном топливе была построена в 1888 году.

Первые электростанции Петербурга вначале размещались на баржах, закрепленных у причалов на реках Мойке и Фонтанке в начале 80-х гг. Мощность каждой станции составляла примерно 200 кВт.

Первая паровая турбина на электростанции в России была установлена в Петербурге в 1891 г. Все электростанции вначале работали на постоянном токе, а это ограничивало радиус обслуживания потребителей несколькими сотнями метров, так как потери составляли почти 20 %.

Увеличение радиуса действия электростанций могло быть осуществлено только при переходе электростанций на переменный ток, при котором можно было использовать повышающие трансформаторы.

1884 г. была построена электростанция переменного тока в Лондоне.

В России крупная электростанция однофазного переменного тока была построена в 1887 г. в Одессе для освещения театра.

В Царском Селе протяженность электрической сети в 1887 г. составляла 64 км. Царское Село было первым городом в Европе, который был освещен исключительно электричеством.

Крупнейшая в России электростанция однофазного тока на 800 кВт была построена на Васильевском острове в Петербурге в 1894 г. под руководством инженера Н.В. Смирнова.

Применение переменного тока позволило упростить и удешевить электрическую сеть.

Начало современного этапа в развитии электроэнергетики относится к 90-м годам XIX в., когда была решена комплексная энергетическая проблема электропередачи и электропривода – применение трехфазного тока.

Первым в России предприятием с трехфазным электроснабжением был Новороссийский элеватор (1893 г.), строителем электростанции был русский инженер А.Н. Шенснович.

Первая трехфазная установка в Америке была сооружена в Калифорнии на гидроэлектростанции в 1893 г.

С 1897 г. началась электрификация крупных городов России.

В конце 1906 г. были изобретены подвесные изоляторы, что позволило увеличить величину передаваемого напряжения.

Первая гидроэлектростанция была построена в США в городе Эплтон (штат Висконсин). Ее мощность была всего 1 л.с.

В 1853 году Компания Найагагра Фоллс Хайдролик Пауэр энд Меньюфекчеринг в США впервые получила лицензию и в 1860 году начала строительство канала на реке Ниагара. 35 футов (11 м) шириной и 8 футов (2,4 м) глубиной канал был завершен в 1861 году, а в 1875 году, электростанция начала работать. Тем не менее, гидравлическая установка производила очень мало энергии, находясь в начале эры электричества. В 1877 году канал и само предприятие приобрел Якоб Шоеллкопф (Jacob Schoellkopf), успешный бизнесмен, которому удалось найти новых клиентов для гидравлической установки в лице нескольких заводов. Более того, в 1882 году он приспособил к одному из водяных колёс электрогенератор, питавший 16 осветительных ламп. Это была одна из первых, по-настоящему промышленных ГЭС в мире, мощностью 50 тыс. л. с., работавшая при напоре 41,2 м. Она была предназначена для электроснабжения г. Буффало и проработала до 1904 года. Здесь была реализована трехфазная система тока, а передача электроэнергии осуществлялась на расстояние 40 км.


Станция на Ниагаре, 1880-е гг.

Первой электростанцией трехфазного тока была Лаутенская гидроэлектростанция. На ней были установлены два одинаковых трехфазных синхронных генератора. Фазное напряжение при помощи трансформаторов повышалось с 50 до 5000 вольт. Ее электроэнергия использовалась для питания осветительной сети города Хейльбронна, а также ряда небольших заводов и мастерских. Понизительные трансформаторы устанавливались непосредственно у потребителей. Эта первая в мире промышленная установка трехфазного тока была запущена в эксплуатацию в начале 1892 г. Использование энергии вод в этой установке показало возможность использования гидроресурсов, отдаленных от промышленных центров. С тех пор число гидроэлектрических установок все время возрастает.

Первые гидростанции, как правило, возводились на базе построенных ирригационных плотин. По-видимому, первой плотиной в Европе, построенной для ГЭС, была Одерич, высочайшая плотина Германии конца ХIХ века. Длина 151 м, максимальная высота 22 м, толщина 16 м на гребне и 44 м у подошвы. Интересна конструкция этой плотины-сэндвича: три стены из гранитной кладки, верховая, низовая и центральная — ядро; пазухи между стенами заполнены грунтом и мхом.

В конце XIX века ГЭС интенсивно строятся в США, Англии, Германии, Франции. В это время были сооружены: Рейнфельдская гидроэлектростанция (Германия, 1898 г.) мощностью 16 800 кВт при напоре воды 3,2 м, Жонажская (Франция, 1901 г.) мощностью 11 200 л. с.

В начале второго десятилетия XX в. были пущены в ход гидроэлектростанции Аугст-Виллен (Германия, 1911 г.) мощностью 44 тыс. л. с, Кеокук (США, 1912 г.) мощностью 180 тыс. л. с. Качество турбинного оборудования было еще недостаточно высоким, КПД колебался в пределах 0,8—0,84. Несовершенными были формы и конструкции гидросооружений, что объясняется недостаточной изученностью вопросов инженерной гидравлики и гидротехники. Поэтому некоторые ГЭС, построенные в эти годы, в последующем подверглись более или менее серьезной реконструкции.

В ХХ веке почти все крупнейшие плотины возводились для получения электроэнергии на гидроэлектростанциях. Строительство ГЭС дало толчок плотиностроению.

В России в эти годы разрабатывается несколько проектов строительства ГЭС. В 1892 г. Н. Н. Бенардос предложил организовать электроснабжение Петербурга путем утилизации энергии Невы на специально построенных электрических станциях (мощностью до 20 000 л. с). В 1893 г. Н. С. Лелявский разработал схему использования гидроэнергии Днепровских порогов. Также разрабатывались проекты на порогах рек Нарова, Иматра, Волхов (В. Добротворский, 1895-99 гг.)

Строительство ГЭС сдерживали общая техническая отсталость и противодействие владельцев угольных шахт. Однако ряд российских инженеров участвовали в строительстве ГЭС в Европе. Так, русский политэмигрант М.О.Доливо-Добровольский в 1891 г. переоборудовал гидросиловую установку на р. Неккар (Германия) в гидростанцию мощностью 220 кВт с генератором трёхфазного тока и осуществил передачу ее переменным током с напряжением 8500 Вольт на расстояние 170 км во Франкфурт на Майне.

В дореволюционной России гидроэлектростанций было мало. Первая ГЭС в Российской империи была построена в 1892 году в Алтайском крае на реке Березовке, притоке Бухтармы, недалеко от г.Зыряновска. ГЭС предназначалась для водоотлива из рудников, располагалась в деревянном здании, имела 4 гидроагрегата общей мощностью 200 кВт. Станция могла работать равномерно весь год, даже если уровень реки резко падал. История сохранила и фамилию автора этого замечательного проекта горного инженера Николая Кокшарова.

ГЭС на реке Березовка, 1892 г

Вторая, мощностью 270 кВт, была построена на реке Охте недалеко от Санкт-Петербурга в 1896 году. Она была построена инженерами Владимиром Николаевичем Чиколевым и Робертом Эдуардовичем Классоном для электроснабжения охтинского порохового

завода в Петербурге.

Ро́берт Эдуа́рдович Классо́н (31 января (12 февраля) 1868, Киев — 11 февраля 1926, Москва) — российский и советский инженер-технолог и изобретатель, один из крупнейших российских энергетиков своего времени.

Ученик В. Н. Чиколева и М. О. Доливо-Добровольского.

После окончания в 1891 году Петербургского технологического института стажировался в Германии, где принимал участие (под руководством М. О. Доливо-Добровольского) в монтаже и пуске первой линии электропередачи трёхфазного тока от Лауффена до Франкфуртской электротехнической выставки.

Участвовал в Петербурге с М. И. Брусневым, Л. Б. Красиным, Н. К. Крупской и др. в первых марксистских кружках; позднее отошёл от политической деятельности.

1895—1896 — руководил строительством электростанции трёхфазного тока на Охтинских пороховых заводах под Петербургом.

1897—1898 — участвовал в проектировании и руководил строительством городских электростанций в Петербурге и Москве.

1900—1906 — совместно с Л. Б. Красиным участвовал в электрификации Бакинских нефтепромыслов (в частности, участвовал в строительстве Биби-Эйбатской электростанции в Баилово). В 1906 году вследствие отказа применить репрессии к бастовавшим рабочим был вынужден оставить пост директора акционерного общества «Электросила».

В 1906—1926 годах — директор тепловой электростанции МГЭС-1.

1912—1914 — участвовал в организации строительства первой российской торфяной электростанции «Электропередача» в Богородском уезде Московской области (ныне Электрогорск).

1914 — участвовал в строительстве линии электропередачи пос. Электропередача—Богородск—Москва (Измайлово) напряжением 70 кВ.

В 1914 году предложил и совместно с инженером В. Д. Кирпичняковым разработал гидравлический способ добычи торфа, который позволил существенно сократить трудоёмкость торфоразработок. Этот способ должен был использоваться на Шатурской электростанции, заложенной в 1916-м Обществом электрического освещения, но из-за событий 1917 года практически был осуществлен только в начале 20-х гг.

В 1918—1920 годы участвовал в разработке плана электрификации страны (ГОЭЛРО).

Работы Классона, выполненные в последние годы жизни, посвящены решению проблем сушки и обезвоживания гидроторфа.

Классон скончался на заседании ВСНХ после произнесения пламенной речи, посвящённой развитию энергетики.

Кроме того, действовали ГЭС «Белый уголь» на р. Подкумок (1903 г.) мощностью 990 л. с, напряжением 8000 В, Гиндукушская ГЭС (1909 г.) на р. Мургаб, мощностью 1 590 л. с. Кроме того, действовали несколько более мелких по мощности (Сашнинская, Аллавердинская, Тургусунская, Сестрорецкая и др.). Общая мощность гидростанций дореволюционной России составляла 8000 кВт.

В 1913 установленная мощность электростанций России составила около 1,1 миллиона кВт. К 1917 году в России было несколько гидростанций установленной мощность в 19 МВт. Самой мощной в то время была Гиндукушская ГЭС — 1,35 МВт.

Существенный вклад в строительство первых ГЭС в Европе внёс выходец из России Габриэль Нарутович. Студент Петербургского университета Нарутович в 1888 г. уехал в Швейцарию на лечение туберкулеза и там остался. По проектам Нарутовича в Европе было построено несколько десятков гидростанций. В их числе ГЭС Мюлленберг на р.Аар (1920 г, 48 тыс. л.с.) в Швейцарии — самая мощная тогда в Европе. Нарутович возглавлял комиссию по зарегулированию р. Рейн. В 1919 г. Нарутович вернулся в Польшу, был министром общественных работ, затем министром иностранных дел. Стал первым президентом независимой Польши.

Электроэнергия становится товаром. Первые электростанции

Электростанции, под которыми понимают фабрики по производству электрической энергии, подлежащей распределению между различными потребителями, появились не сразу. В 70-х и начале 80-х годов прошлого столетия место производства электроэнергии не было отделено от места потребления.

Электрические станции, обеспечивавшие электроэнергией ограниченное число потребителей, назывались блок-станциями (не путать с современным понятием блок-станций, под которым некоторые авторы понимают фабрично-заводские теплоэлектроцентрали). Такие станции иногда называли «домовыми».

В связи с трудностями регулировки системы дугового освещения на первых порах строились специализированные блок-станции: одни для дуговых ламп, другие — для ламп накаливания. Иногда на одной и той же станции генераторы разделяли на две соответствующие группы.

Развитие первых электростанций было сопряжено с преодолением трудностей не только научно-технического характера. Так, городские власти запрещали сооружение воздушных линий, не желая портить внешний вид города. Конкурирующие газовые компании всячески подчеркивали действительные и мнимые недостатки нового вида освещения.

Первые электростанции

На электрических блок-станциях, строившихся в конце 70-х и в начале 80-х годов прошлого столетия, в качестве первичных двигателей применялись в основном поршневые паровые машины. В отдельных случаях использовались двигатели внутреннего сгорания, в то время являвшиеся новинкой. Для удешевления паросиловой части блок-станций широко применялись локомобили. От первичного двигателя к электрическому генератору делалась ременная передача, позволявшая приводить в движение быстроходные электрические генераторы от сравнительно тихоходных паровых машин, имевших частоту вращения не более 200 об/мин.

Впервые блок-станции были построены в Париже для освещения улицы Оперы.В России первой установкой такого рода явилась станция для освещения Литейного моста в Петербурге, созданная в 1879 году при участии П. Н. Яблочкова. С конца 1881 г. возникают блок-станции, в сети которых включались как дуговые лампы, так и лампы накаливания.

Первые электростанции

Однако идея централизованного производства электроэнергии была настолько экономически оправданной и настолько соответствовала тенденции концентрации промышленного производства, что первые центральные электростанции возникли уже в середине 80-х годов и быстро вытеснили блок-станции. В связи с тем, что в начале 80-х годов массовыми потребителями электроэнергии могли стать только источники света, первые центральные электростанции проектировались как правило для питания осветительной нагрузки и вырабатывали постоянный ток.

В 1881 г. несколько предприимчивых американских финансистов под впечатлением успеха, которым сопровождалась демонстрация ламп накаливания, заключили соглашение с Эдисоном и приступили к сооружению первой в мире центральной электростанции (на Пирль-стрит в Нью-Йорке). В сентябре 1882 г. эта электростанция была сдана в эксплуатацию.

В машинном зале станции было установлено шесть генератораторов Эдисона. Мощность каждого генератора составляла около 90 кВт, а общая мощность электростанции превышала 500 кВт. Здание станции и ее оборудование были спроектированы весьма целесообразно, так что в дальнейшем при строительстве новых электростанций развивались многие из тех принципов, которые были предложены Эдисоном.

Так, генераторы станций имели искусственное охлаждение и соединялись непосредственно с двигателем. Напряжение регулировалось автоматически. На станции осуществлялись механическая подача топлива в котельную и автоматическое удаление золы и шлака. Защита оборудования от токов короткого замыкания осуществлялась плавкими предохранителями, а магистральные линии были кабельными. Станция снабжала электроэнергией обширный по тому времени район площадью 2,5 км . Вскоре в Нью-Йорке было построено еще несколько станций.

Первые электростанции

Исходное напряжение первых электростанций, от которого впоследствии были произведены другие, образующие известную шкалу напряжений, сложилось исторически.

Дело в том, что в период исключительного распространения дугового электрического освещения эмпирически было установлено, что наиболее подходящим для горения дуги является напряжение 45 В. Чтобы уменьшить токи короткого замыкания, которые возникали в момент зажигания ламп (при соприкосновении углей), и для более устойчивого горения дуги включали последовательно с дуговой лампой балластный резистор.

Так же эмпирически было найдено, что сопротивление балластного резистора должно быть таким, чтобы падение напряжения на нем при нормальной работе составляло примерно 20 В. Таким образом, общее напряжение в установках постоянного тока сначала составляло 65 В, и это напряжение применялось долгое время. Однако часто в одну цепь включали последовательно две дуговые лампы, для работы которых требовалось 2 x 45 = 90 В, а если к этому напряжению прибавить еще 20 В, приходящиеся на сопротивление балластного резистора, то получится напряжение 110 В. Это напряжение почти повсеместно было принято в качестве стандартного, и именно оно открывает современную шкалу напряжений, хотя причина выбора давно забыта.

Первые электростанции

Уже при проектировании первых центральных электростанций столкнулись с трудностями, которые в достаточной степени не были преодолены в течение всего периода господства техники постоянного тока. Радиус электроснабжения определяется допустимыми потерями напряжения в электрической сети, которые для данной сети тем меньше, чем выше напряжение. Именно эти обстоятельства заставляли строить электростанции в центральных районах города, что существенно затрудняло не только обеспечение водой и топливом, но и удорожало стоимость земельных участков для строительства станций, так как земля в центре города была чрезвычайно дорога. Этим в частности объясняется необычный вид нью-йоркских станций, на которых оборудование располагалось на многих этажах.

Положение осложнялось еще и тем, что на первых электростанциях приходилось размещать большое число котлов, паропроизводительность которых не соответствовала новым требованиям, предъявленным электроэнергетикой.

Не менее удивился бы наш современник, увидев первые петербургские электростанции, которые обслуживали район Невского проспекта. В начале 80-х годов они размещались на баржах, закрепленных у причалов на реках Мойке и Фонтанке.

Строители исходили из соображений дешевого водоснабжения, кроме того, при таком решении не нужно было покупать земельные участки, близкие к потребителю.

В 1886 г. в Петербурге было учреждено акционерное «Общество электрического освещения 1886 г.» (сокращенно называлось «Общество 1886 г.»), которое приобрело станции на реках Мойке и Фонтанке и построило еще две: у Казанского собора и на Инженерной площади. Мощность каждой из этих станций едва превышала 200 кВт.

В Москве первая центральная электростанция (Георгиевская) была построена в 1886 г. тоже в центре города, на углу Большой Дмитровки (ныне Пушкинская ул.) и Георгиевского переулка. Ее энергия использовалась для освещения прилегающего района. Мощность станции составляла 400 кВт.

Ограниченные возможности расширения радиуса электроснабжения привели к тому, что удовлетворить спрос на электроэнергию со временем становилось все труднее. Так, в Петербурге и Москве к середине 90-х годов возможности присоединения новой нагрузки к существующим станциям были исчерпаны и встал вопрос об изменении схем сети или даже об изменении рода тока.

На центральных станциях с ростом их мощности локомобили, применявшиеся в качестве первичных двигателей блок-станций, постепенно вытеснялись стационарными машинами. Мощность их машин составляла 100—300 л.с, частота вращения вала была относительно невелика (100—200 об/мин), что привело к необходимости ввести между машиной и генератором ременную или канатную передачу.

В котельной ранних тепловых электростанции устанавливались жаротрубные котлы, однако вскоре в связи с ростом мощности потребовались котлы более высокой паропронзводительность — водотрубные паровые. В конце XIX и начале XX вв. преимущественное распространение в котельных зарубежных электростанции получили котлы Бабкок-Вилькокс, а в России — котлы системы Шухова.

Основным топливом котельных с ручной загрузкой служил уголь, сжигавшийся на плоских колосниках. Расход угля при таком способе сжигания и отсутствии экономайзеров, подогрева воздуха и при плохой изоляции в 3—4 раза превышал расходы современных станций.

Рост потребностей в электроэнергии эффективно стимулировал повышение производительности и экономичности тепловой части электрических станций. Прежде всего следует отметить решительный поворот от поршневых паровых машин к паровым турбинам. Первая паровая турбина на электростанциях России была установлена в 1891 г. в Петербурге (станция на реке Фонтанке). За год до этого испытание турбины было проведено на станции расположенной на реке Мойке.

В рассматриваемый период гидроэлектростанции строились редко в связи с трудностями передачи электроэнергии на большие расстояния. Выше уже отмечался наиболее существенный недостаток электроснабжения постоянным током — слишком малая площадь района, которая может обслуживаться центральной электростанцией. Удаленность нагрузки не превышала нескольких сотен метров.

Электростанции — предприятия стремились расширить круг потребителей своего товара — электроэнергии. Этим объясняются настойчивые поиски путей увеличения площади электроснабжения при условии сохранения уже построенных станций постоянного тока. Было найдено несколько путей увеличения радиуса распределения энергии.

Первая идея, не получившая заметного распространения, касалась понижения напряжения электрических ламп, подключающихся в конце линии. Однако расчеты показали, что при протяженности сети более 1,5 км экономически выгодней было построить новую электростанцию.

Другое решение, которое могло во многих случаях удовлетворить потребность, состояло в изменении схемы сети, переход от двухпроводных сетей к многопроводным, т.е. фактически к повышению напряжения.

Трехпроводная система распределения электроэнергии была предложена в 1882 г. Дж. Гонкпнсоном и независимо от него Т. Эдисоном. При этой системе генераторы на электростанции соединялись последовательно и от обшей точки шел нейтральный или компенсационный провод. При этом обычные лампы сохранялись. Они включались как правило между рабочими и нейтральным проводами, а двигатели для сохранения симметрии нагрузки можно было включать на повышенное напряжение (220 В).

Если нагрузки в обеих ветвях трехпроводной системы была одинаковой, то в нейтральном проводе тока не было. В других случаях в нейтральном проводе появлялся ток, который обычно был много меньше рабочего тока. Последнее обстоятельство позволяло выбирать сечение нейтрального провода меньшим (обычно 1/2 : или 1/3 сечения рабочего провода).

Не следует упускать из виду, что сечение рабочих проводов при этом тоже уменьшалось по сравнению с сечением проводок в двухпроводной системе. Это объяснялось тем, что при увеличении напряжения вдвое ток при тон же мощности вдвое уменьшался, а потери, пропорциональные квадрату тока, снижались вчетверо. Практическими результатами введения трехпроводной системы явилось, во-первых, увеличение радиуса электроснабжения примерно до 1200 м, во-вторых, относительная экономия меди (при всех прочих одинаковых условиях расход меди при трехпроводной системе был практически вдвое меньше, чем при двухпроводной).

Для регулирования напряжения в ветвях трехпроводной сети применялись различные устройства: регулировочные дополнительные генераторы, делители напряжения, в частности получившие значительное распространение делители напряжения Доливо-Добровольского, аккумуляторные батареи. Трехпроводная система широко применялась как в России, так и за рубежом. Она сохранилась вплоть до 20-х годов нашего века, а в отдельных случаях применялась и позднее.

Максимальный вариант многопроводных систем — пятипроводная сеть постоянного тока, в которой применялись четыре последовательно включенных генератора и напряжение увеличивалось вчетверо. Радиус электроснабжения возрастал до 1500 м. Однако сравнительно незначительное увеличение радиуса электроснабжения достигалось в этом случае за счет существенного усложнения сети, повышения напряжения до опасных пределов, усложнения регулирования равномерности нагрузки отдельных ветвей. Поэтому пятипроводная система не получила широкого применения, хотя ее автор В. Сименс предполагал, что пятипроводная система будет с успехом конкурировать с системами переменного тока.

Первые электростанции

Третий путь увеличения радиуса электроснабжения предполагал сооружение аккумуляторных подстанций. Аккумуляторные батареи были в то время обязательным дополнением каждой электростанции. Они покрывали пики нагрузок. Заряжаясь в дневные и поздние ночные часы, они служили резервом. Аккумуляторные батареи так же, как и на современных электростанциях (где, впрочем, эти батареи выполняют иные функции — питание цепей управления, защиты, автоматики и аварийного освещения), размещались в специальных обширных помещениях.

Для увеличения радиуса электроснабжения аккумуляторные батареи устанавливались на подстанциях в двухпроводных сетях постоянного тока. Эти подстанции сооружались вблизи отдельных потребителей. Группы аккумуляторных батарей, соединенные последовательно, заряжались от центральной станции при двойном напряжении, а при параллельном соединении они питали местную нагрузку.

Сети с аккумуляторными подстанциями получили некоторое распространение. В Москве, например, была построена в 1892 г. аккумуляторная подстанция в Верхних торговых рядах (ныне ГУМ), находившаяся на расстоянии 1385 м от Георгиевской центральной станции. На этой подстанции были установлены аккумуляторы, питавшие около 2000 ламп накаливания.

В последние два десятилетия прошлого века было построено много электростанций постоянного тока, и они долгое время давали значительную долю общей выработки электроэнергии. Мощность таких электростанций редко превышала 500 кВт, агрегаты обычно имели мощность до 100 кВт.

Все возможности увеличения радиуса электроснабжения при постоянном токе довольно быстро были исчерпаны. Многопроводные сети и сети с аккумуляторными подстанциями могли еще удовлетворять потребности малых и средних городов, но совершенно не отвечали нуждам крупного города.

В 80-х годах начинают сооружаться станции переменного тока, выгодность которых с точки зрения увеличения радиуса электроснабжения была бесспорной.

Если не считать блок-станций переменного тока, построенных в Англии в 1882—1883 гг., когда появились трансформаторы Голяра и Гиббса, то, по-видимому, первой постоянно действовавшей электростанцией переменного тока можно считать станцию Гровнерской галереи (Лондон).

На этой станции, пущенной в эксплуатацию в 1884 г., были установлены два генератора переменного тока Сименса, которые через последовательно включенные трансформаторы Голяра и Гиббса работали на освещение галереи. Недостатки последовательного включения трансформаторов и, в частности, трудности поддержания постоянства тока были выявлены довольно быстро, и в 1886 г. эта станция была реконструирована по проекту С. Ц. Ферранти. Генераторы Сименса были заменены машинами конструкции Ферранти каждая мощностью 1000 кВт с напряжением на зажимах 2,5 кВ. Трансформаторы, изготовленные по проекту Ферранти, включались в цепь параллельно и служили для снижения напряжения в непосредственной близости от потребителей.

В 1889—1890 гг. Ферранти вновь вернулся к проблеме электроснабжения Лондона. На этот раз была поставлена задача обеспечить электроэнергией весь район лондонского Сити. Но поскольку компания, финансировавшая работы, не соглашалась оплатить высокую стоимость земельного участка в центре города, Ферранти выбрал место для новой центральной электростанции в одном из предместий Лондона, в Дентфорде, находящемся в 12 км от Сити.

Построить электростанцию на таком большом расстоянии от места потребления электроэнергии можно было только при условии, что она будет вырабатывать переменный ток.

При сооружении этой установки были применены мощные по тому времени машины высокого напряжения. Были установлены генераторы мощностью по 1000 л.с. с напряжением 10 кВ, причем в отличие от старых генераторов, которые приводились в движение от паровой машины при помощи канатной передачи, новые генераторы были непосредственно соединены с быстроходными вертикальными паровыми машинами.

Частота вращении вала паровых поршневых двигателей также сильно отставала от нормальной скорости электрогенераторов. Этим в частности объясняется своеобразная конструкция электрических генератором того времени, они имели большие диаметры и малые длины. Такие же в общем соотношения между диаметром и длиной машины сохранились и в настоящее время на гидростанциях с относительно тихоходными водяными проймами в качестве первичного двигателя. Общая мощность дентфордской станции составляла около 3000 кВт.

На четырех городских подстанциях, питавшихся по четырем магистральным кабельным линиям, напряжение понижалось до 2400 В), а затем уже у потребителей (в домах) напряжение понижалось до 100 В.

Примером крупной гидростанции однофазного тока, питавшей осветительную нагрузку, может служить станция, построенная в 1889 г, на водопаде вблизи Портленда (США). На этой станции гидравлические двигатели приводили в действие восемь однофазных генераторов общей мощностью 720 кВт. Кроме того, на станции были установлены 11 генераторов, предназначенных специально для питания дуговых ламп (по 100 ламп на каждый генератор). Энергия этой станции передавалась на расстояние 14 миль в Портленд.

Первые электростанции

Характерная особенность первых электростанции переменного тока — изолированная работа отдельных машин. Синхронизация генераторов еще не производилась и от каждой машины шла отдельная цепь к потребителям. Легко понять, насколько неэкономичными при таких условиях оказывались электрические сети, на сооружение которых расходовались колоссальные количества меди и изоляторов.

В России крупнейшие станции однофазного тока были сооружены в конце 80-х и начале 90-х годов. Первая центральная электростанция построена венгерской фирмой «Ганц и К » в Одессе в 1887 г. Основным потребителем энергии была система электрического освещения нового театра.

Эта электростанция представляла собой прогрессивное для своего времени сооружение. Она имела 4 водотрубных котла общей производительностью 5 т пара в час, а также два синхронных генератора общей мощностью 160 кВт при напряжении на зажимах 2 кВ и частоте 50 Гц. От распределительного шита энергия поступала в линию длиной 2,5 км, ведущую к трансформаторной подстанции театра, где напряжение понижалось. Оборудование электростанции было столь совершенным для своею времени, что, несмотря на то, что топливом служили привозной английский уголь, стоимость электроэнергии была ниже, чем на более поздних петербургских и московских электростанциях. Расход топлива составлял .1,4 кг/кВт ч (на петербургских электростанциях — 3,9—5,4 кг/кВтч).

В том же году началась эксплуатация электростанции постоянного тока в Царском Селе (ныне г. Пушкин). Протяженность воздушной сети в Царском Селе уже в 1887 г. была около 64 км, тогда как два года спустя суммарная кабельная сеть «Общества 1886 г.» в Москве и Петербурге, составляла только 115 км. В 1890 г. Царскосельская станция и сеть были реконструированы и переведены на однофазный переменный ток напряжением 2 кВ. По свидетельству современников, Царское Село было первым городом в Европе, который был освещен исключительно электричеством.

Крупнейшей в России электростанцией однофазного тока была станция на Васильевском острове в Петербурге, построенная в 1894 г. инженером Н. В. Смирновым. Мощность ее составляла 800 кВт и превосходила мощность любой существовавшей в то время станции постоянного тока. В качестве первичных двигателей использовались четыре вертикальные паровые машины мощностью 250 лс. каждая. Применение переменного тока напряжением 2000 В позволило упростить и удешевить электрическую сеть и увеличить радиус электроснабжения (более 2 км при потере до 3 % напряжения в магистральных проводах вместо 17—20 % в сетях постоянного тока).

Таким образом, опыт эксплуатации центральных станций и сетей однофазного тока показал преимущества переменного тока, но вместе с тем, как уже отмечалось, выявил ограниченность его применения. Однофазная система тормозила развитие электропривода, усложняла его. Так, например, при подключении силовой нагрузки к сети Дептфордской станции приходилось Дополнительно помешать на валу каждого синхронного однофазного двигателя еще разгонный коллекторный двигатель переменного тока. Легко понять, что такое усложнение электропривода делало весьма сомнительной возможность его широкого применения.

Веселовский О. Н. Шнейберг Я. А. Очерки по истории электротехники

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *