Тема: Геодезические сети. Топографические съемки
_______ Для составления карт и планов, решения геодезических задач в том числе геодезического обеспечения строительства, на поверхности Земли располагают ряд точек, связанных между собой единой системой координат. Эти точки маркируют на поверхности Земли или в зданиях и сооружениях центрами (знаками).
_______ Геодезическая сеть – это система закрепленных точек земной поверхности, положение которых определено в общей для них системе геодезических координат.
_______ Геодезические сети подразделяют на плановые и высотные : первые служат для определения координат X и Y геодезических центров, вторые — для определения их высот.
_______ Принцип построения плановых геодезических сетей заключается в следующем. На местности выбирают точки, взаимное положение которых представляется в виде геометрических фигур: треугольников, четырехугольников, ломаных линий и т.д. Причем точки выбирают с таким расчетом, чтобы некоторые элементы фигур (стороны, углы) можно было бы непосредственно измерить, а все другие элементы вычислить по данным измерений. Например, в треугольнике достаточно измерить одну сторону и три угла (один для контроля правильности измерений) или две стороны и два угла (один для контроля правильности измерений), а остальные стороны и углы вычислить. Для вычисления плановых координат вершин выбранных точек необходимо кроме элементов геометрических фигур знать еще дирекционный угол стороны одной из фигур и координаты одной из вершин.
_______ Сети строят по принципу перехода от общего к частному, т. е. от сетей с большими расстояниями между пунктами и высокоточными измерениями к сетям с меньшими расстояниями и менее точным.
_______ Геодезические сети подразделяют на четыре вида: государственные, сгущения, съемочные и специальные. Государственные геодезические сети служат исходными для построения всех других видов сетей. Началом единого отсчета плановых координат в Российской Федерации служит центр круглого зала Пулковской обсерватории в Санкт-Петербурге.
2. Методы создания геодезических сетей
_______ Плановые геодезические сети создаются методами триангуляции, полигонометрии и трилатерации. При построении геодезической сети методом триангуляции на местности закрепляется ряд точек, которые в своей совокупности образуют систему треугольников. В треугольниках измеряются все углы и некоторые стороны, которые называются базисными. По длине базисной стороны и измеренным углам, вычисляют длины всех сторон, а затем координаты всех пунктов сети.
_______ Метод полигонометрии заключается в построении на местности системы ломанных линий, называемых полигонометрическими ходами. Эти ходы прокладывают обычно между пунктами триангуляции. В полигонометрических ходах измеряются все углы поворота и длины всех сторон.
_______ При построении сети методом трилатерации на местности также строится сеть треугольников, в которых при помощи высокоточных дальномеров измеряются все стороны.
_______ Сети сгущения строят для дальнейшего увеличения плотности (числа пунктов, приходящихся на единицу площади) государственных сетей. Плановые сети сгущения подразделяют на 1-й.и 2-й разряды.
_______ Съемочные сети — это тоже сети сгущения, но с еще большей плотностью. С точек съемочных сетей производят непосредственно съемку предметов местности и рельефа для составления карт и планов различных масштабов.
_______ Специальные геодезические сети создают для геодезического обеспечения строительства сооружений. Плотность пунктов, схема построения и точность этих сетей зависят от специфических особенностей строительства.
_______ Государственные высотные геодезические сети создают для распространения по всей территории страны единой системы высот. За начало высот в Российской Федерации и некоторых других странах принят средний уровень Балтийского моря, определение которого проводилось в период с 1825 до 1840 г. Этот уровень отмечен горизонтальной чертой на медной металлической пластине, укрепленной в устое моста через обводной канал в Кронштадте.
_______ Между пунктами государственных высотных геодезических сетей высокой точности (1-го класса) размещают пункты высотных сетей низших классов (2-го, 3-го и т.д.). Несколько пересекающихся ходов называют сетями. Как правило, сети создают из ходов, прокладываемых между тремя или более точек. В целом точки (реперы) высотных сетей, называемых нивелирными, достаточно равномерно распределены на территории страны.
_______ На незастроенной территории расстояния между реперами составляют 5. 7 км, в го- родах сеть реперов в 10 раз плотнее
_______ Для решения ограниченного круга вопросов при изысканиях, строительстве и эксплуатации зданий и сооружений создают высотную сеть технического класса.
_______ Как правило, сети образуют полигоны с узловыми точками (общими точками пересечения двух или более ходов одного и того же класса). Каждый нивелирный ход опирается обоими концами на реперы ходов более высокого класса или узловые точки.
3. Закрепление на местности пунктов геодезических сетей
_______ Точки геодезических сетей закрепляют на местности знаками. По местоположению знаки бывают: грунтовые и стенные, заложенные в стены зданий и сооружений; металлические, железобетонные, деревянные, в виде откраски и т.д.; по назначению — постоянные, к которым относятся все знаки государственных геодезических сетей, и временные, устанавливаемые на период изысканий, строительства, реконструкции, наблюдений и т.д.
_______ Постоянные знаки. Их закрепляют подземными знаками — центрами. Конструкции центров обеспечивают их сохранность и неизменность положения в течение длительного периода времени. Как правило, подземный центр представляет собой бетонный монолит , закладываемый ниже глубины промерзания грунта и не в насыпной массив. У поверхности земли в монолите устанавливают чугунную марку, на которой наносят центр в виде креста или точки. Положению этого центра соответствуют коор- динаты Х и Y и во многих случаях отметки.
_______ Для того чтобы с одного знака был виден другой (смежный),над подземными центрами устанавливают наружные знаки в виде металлических или деревянных трех- или четырехгранных пирамид или сигналов.
_______ Пирамиды или сигналы имеют высоту 3. 30 м и более. Геодезический сигнал с подземным центром и столиком предназначен для установки измерительных приборов и настила при работе на нем наблюдателя. Верх сигнала или пирамиды заканчивается визирной целью , на которую при измерении углов направляют зрительную трубу теодолита. Настолик устанавливают также отражатель, если измеряют расстояния между пунктами светодалъномером. Для спутниковых измерений сигналы и пирамиды строить не надо.
_______ Как правило, пункты плановых разбивочных сетей и сетей сгущения закрепляют подземными центрами, такими же как и пункты государственных сетей. Так как расстояния между этими пунктами сравнительно небольшие, оформления их наружными знаками не требуется. Знаки могут закладывать в зданиях и сооружениях, в этом случае их называют стенными.
_______ Координаты всех пунктов плановой геодезической сети, а также отметки пунктов высотной геодезической сети заносятся в специальные каталоги , в которых кроме названия пунктов дается описание их местоположения.
_______ Иногда для различных целей могут создаваться местные геодезические сети. Обязательным требованием при установлении местных систем координат является обеспечение возможности перехода от местной системы координат к государственной системе координат, который осуществляется с использованием параметров перехода (ключей).
_______ Каждая местная система координат может создаваться с одной или несколькими трех или шести градусными зонами. Параметры местных систем координат и ключи перехода к государственной системе координат (формулы и правила, по которым координаты точек в одной системе можно получить в другой системы) устанавливает Росреестр по согласованию с Минобороны РФ.
4. Топографические съемки, ее виды
_______ Существуют следующие виды топографических съемок:
_______ • теодолитная (горизонтальная),
_______ • мензульная и др.
4.1 Что такое теодолитная съемка
_______ Теодолитной съемкой называется горизонтальная или контурная съемка местности, которая выполняется с помощью теодолита.
_______ Теодолитом измеряются горизонтальные углы и углы наклона . Линии измеряются рулеткой и дальномерами различных конструкций.
_______ Для проектирования зданий, сооружений необходимо на район строительства иметь топографические материалы – планы, карты. При отсутствии таких материалов выполняют съемку данного участка местности.
4.2 Сущность теодолитной съемки
_______ Теодолитная съемка выполняется с помощью теодолита и рулетки (или дальномера соотвествующей точности). В результате теодолитной съемки получают контурный план местности.
_______ Съемку контуров выполняют на основе съемочных теодолитных ходов, которые прокладываются в виде :
а) замкнутых ходов,
б) разомкнутых ходов,
в) диагональных ходов.
_______ Теодолитная съемка складывается из следующих видов работ :
• прокладка теодолитных ходов и привязка их к пунктам геодезической сети,
• съемка ситуации,
• обработка результатов полевых измерений,
• построение плана.
_______ Длины сторон теодолитных ходов должны быть не более 350 м и не менее 20 м .
5. Прокладка теодолитных ходов. Привязка к пунктам геодезической сети
_______ Сначала намечаются поворотные точки теодолитного хода. Угловые измерения в теодолитных ходах выполняются способом приемов техническими теодолитами ( Т30 , 2Т30 ). Стороны измеряются стальной 20-ти метровой рулеткой в двух направлениях или дальномерами соответствующей точности. Для определения горизонтальных проложений измеряют углы наклона линии. Весь данный процесс называют рекогносцировкой .
_______ Привязка теодолитных ходов заключается в измерении привычных углов между сторонами теодолитного хода и геодезической сети, обязательно с контролем.
6. Съемка ситуации
_______ Съемка ситуации заключается в привязке контуров и предметов местности к сторонам и вершинам теодолитного хода.
_______ Съемка ситуации может быть выполнена различными способами .
6.1. Способ прямоугольных координат (способ перпендикуляров)
_______ Ближайшая к контуру сторона хода принимается за ось абсцисс, точка А – за начало координат. Положение каждой точки определяется прямоугольными координатами X и Y . Перпендикуляры на местности строятся с помощью двузеркального эккера .
_______ Абсциссы отмеряют обычно с помощью мерной ленты, а ординаты – с помощью рулетки. Способ перпендикуляров применяется в основном при съемке вытянутых в длину контуров .
6.2. Способ полярных координат (полярный способ)
_______ В этом случае ближайшая к контуру сторона теодолитного хода принимается за полярную ось, начало линии – за полюс. Положение точек 1, 2, 3 определяется полярными углами ß1, ß2, ß3 ; радиус – векторами d1, d2, d3 .
_______ Полярные углы измеряются с помощью теодолита одним полуприемом, причем лимб ориентируется по сторонам хода, стороны измеряются с помощью нитяного дальномера . При съемке особо важных контуров – с помощью ленты .
6.3. Способ линейных засечек
_______ Треугольники стараются делать близкими к равносторонним. Линейная засечка применяется часто при съемке строений. В этом случае расстояния измеряются лентой или рулеткой.
6.4. Способ угловых засечек
_______ Способ угловых засечек применяется в тех случаях, когда определить положение точки при помощи линейных измерений не удается.
6.5. Способ створов
_______ Положение точки Р определяется расстоянием 2-Р вдоль линии 2-Е . Положение створной линии определяется расстоянием 4-Е .
_______ При съемке ситуации составляется абрис .
_______ Абрис – это схематический чертеж, составленный в произвольном масштабе.
_______ На абрисе зарисовывается снимаемая ситуация и записываются результаты выполняемых при съемке угловых и линейных измерений. Абрис составляется отдельно на каждую сторону теодолитного хода. На основе абриса производится нанесение контуров местности на план.
Инструкция по прохождению теста
- Выберите один из вариантов в каждом из 10 вопросов;
- Нажмите на кнопку «Показать результат»;
- Скрипт не покажет результат, пока Вы не ответите на все вопросы;
- Загляните в окно рядом с номером задания. Если ответ правильный, то там (+). Если Вы ошиблись, там (-).
- За каждый правильный ответ начисляется 1 балл;
- Оценки: менее 5 баллов — НЕУДОВЛЕТВОРИТЕЛЬНО, от 5 но менее 7.5 — УДОВЛЕТВОРИТЕЛЬНО, 7.5 и менее 10 — ХОРОШО, 10 — ОТЛИЧНО;
- Чтобы сбросить результат тестирования, нажать кнопку «Сбросить ответы»;
Заземление и методы измерения сопротивления
Заземление — непременный элемент электробезопасности. Устройство контура заземления, а также установка системы молниезащиты входят в число обязательных мероприятий при проведении строительно-монтажных, ремонтных и прочих видов работ на разных объектах.
Для чего нужны заземляющие системы
Заземление — соединение электросети или оборудования с землей. Главная функция — защита жизни и здоровья человека от удара током. Также с помощью заземляющих систем повышают показатели электро- и пожаробезопасности зданий, конструкций и сооружений.
Заземляющие меры принимаются для того, чтобы:
- Уменьшить разность потенциалов до безопасных значений;
- Автоматизировать выключение при попадании фазы на заземленную поверхность;
- Отвести ток утечки, если в цепи появилось напряжение.
Благодаря этому эксплуатация электрических сетей и устройств становится безопаснее.
Основным документом, в котором описаны меры защиты, считается ПУЭ — Правила устройства электроустановок. В главе 1.7 указанных Правил приведены положения и общие требования к устройству заземляющих мероприятий.
Какие виды заземления бывают
Заземление бывает естественным и искусственным. К первому типу относят конструкции, которые находятся в грунте постоянно: трубопроводы, арматура в ЖБИ, металлические конструкции и пр. Вторая разновидность — специально созданная с помощью заземлителей и проводников система.
Выделяют следующие виды заземления:
- Рабочее;
- Защитное;
- Молниезащита.
К рабочему типу относятся системы, которые были соединены с землей преднамеренно. То есть при монтаже трансформаторов, генераторов и прочих установок происходит подключение токоведущих частей или определенных точек к заземляющему устройству. Это делается для отвода нежелательных токов и для обеспечения нормальной работы оборудования.
Защитное заземление тоже заключается в намеренном подсоединении сетей и устройств к заземлителю. Но делается это для того, чтобы обеспечить требуемый уровень электробезопасности.
Система молниезащиты рассчитана на создание безопасных условий эксплуатации объекта во время грозы и при воздействии молнии. В состав такой системы включены молниеприемные мачты, шины заземления, токоотводы и пр.
Кроме этого, при устройстве заземления необходимо учитывать характеристики нейтрали (глухозаземленная, эффективно заземленная, изолированная и пр.) и электроустановок (до 1кВ, свыше 1кВ). В зависимости от этого подбирают тип заземляющей системы постоянного и переменного тока.
Конструктивно заземляющие системы могут быть разными: простыми (состоящими из небольшого количества элементов), многоэлементными (включающими компоненты сложных форм).
Методы измерения сопротивления
Для достижения уровня защиты, соответствующего требованиям действующих нормативов, необходимо проводить измерение сопротивления заземления. Руководством для проведения замеров выступают действующие нормативы, такие как ГОСТ Р 50571.16-2007.
Сегодня существует несколько методов измерения:
- Трехпроводный;
- Четырехпроводный;
- Двухклещевой.
Первые две разновидности схожи по принципу проведения замеров: используются вспомогательные штыри, амперметр, вольтметр. Помимо этого, оба вида измерений могут проводиться одним и тем же измерительным прибором.
Двухклещевой, или метод двух клещей, особенно распространен при проведении измерений в густонаселенных местах, где есть ограничение по площади. Этот способ не требует забивания в грунт штырей.
Методика трехпроводного измерения
Для проверки данным методом подходят измерители сопротивления заземления разного типа, например, ИС-20. Трехпроводный, или трехполюсный (трехзажимный) метод — основной из применяемых сегодня.
Его суть заключается в подключении клемм на измерителе тремя проводами к трем точкам:
- К исследуемому заземлению;
- К потенциальному стержню;
- К токовому стержню.
При этом измерительные стержни должны находиться недалеко от заземлителя по однолучевой схеме, т.е. по одной прямой. В результате можно получить значение сопротивления заземляющего устройства, рассчитанное по закону Ома.
Обобщенная методика этого способа на примере измерителя ИС-20/1:
- Обесточить элементы заземления и металлосоединения, отключив их от главной заземляющей шины ГЗШ.
- Подготовить прибор к работе.
- Подсоединить струбцину к заземлителю, а затем к измерителю через соответствующую клемму. Если заземляющий элемент покрыт грязью или ржавчиной, рекомендуется очистить его перед началом работы.
- Установить по прямой линии потенциальный и токовый штыри. Их забивают в грунт на глубину, указанную в нормативах и документации к объекту. Расстояние между элементами также определяется в зависимости от характеристик объекта.
- В специальный разъем штыря вставить один конец кабеля, а другой конец подсоединить к соответствующему разъему. То же проделать со вторым штырем. Чтобы не повредить электроды рекомендуется хранить и перемещать их в чехле.
Убедиться, что напряжение помехи составляет менее 24В. Если показатель больше, то нужно поменять местоположение электродов. С помощью перестановки потенциального стержня можно убедиться, что разница в результатах составляет не более 5%.
Для проведения измерений необходимы дополнительные аксессуары в виде штырей заземления
Преимуществом 3p-метода считается меньшее, чем в четырехпроводном методе, количество проводов. Недостаток — влияние сопротивления провода на результат. В связи с этим трехзажимный способ замеров используется, когда заранее известно, что сопротивление заземления больше 5 Ом.
Четырехпроводный метод
Для измерений подходят те же приборы, что и в предыдущей методике. Например, для работы можно использовать ИС-20 и ИС-20/1. Алгоритм работы также схож с 3-проводным методом. Только через один из кабелей протекает ток, а другой провод подключен к точке измерения. Благодаря этому сопротивление тока почти не влияет на точность результатов.
Два других провода подсоединяются к металлическим штырям. Четырехзажимный, или четырехполюсный способ, отличается меньшим процентом погрешности. Поэтому он применяется, когда нужны более точные показания.
Метод двух клещей
Использование перечисленных выше методик с использованием двух металлических электродов не всегда подходит. Особенно в местах, где вбивание в грунт штырей невозможно.
Поэтому многие производители измерительного оборудования создают приборы, которые способны проводить замеры двухклещевым методом. Его суть заключается в использовании передающих и дополнительных клещей. Первые возбуждают ток в замеряемом заземлении благодаря электромагнитной индукции. Дополнительные клещи измеряют сопротивление.
Двухклещевой метод возможно использовать как в системах, где есть дополнительные электроды заземления, так и там, где вспомогательных элементов нет.
На примере измерителя ИС-20/1 в качестве измерительных клещей можно использовать КТИ-20/1 или КТИ-20/2, а также передающие клещи КП-20/1. В СОЮЗ-ПРИБОР можно приобрести ИС-20/1 с входящими в комплект клещами.
- Обесточить заземляющее устройство;
- Подсоединить к заземлителю токовые и передающие клещи, убедившись перед этим, что величина фонового тока не более 2,5А;
Если есть возможность, в сочетании с измерительными токовыми клещами можно использовать металлические электроды.
Другие методы измерения
Существуют и другие виды измерения сопротивления заземления:
- Двухпроводный. Для измерения в землю вбивается металлический штырь, к которому подсоединяется один провод прибора. Другой провод подключают к шине заземления. Из-за невозможности использовать второй штырь, данный способ считается неточным и используется в крайнем случае.
- Компенсационный. Аналоговый метод, который позволяет проводить измерения, отстроившись от помех, которые создаются блуждающими токами. Недостаток — сложность, связанная со строгими требованиями к измерительному оборудованию и квалификации специалиста.
Удельное сопротивление земли
Земля — один из основных элементов в системе заземления любой сети и оборудования. Ведь именно грунт способен нейтрализовать ток утечки. Поэтому этот компонент крайне важен при создании системы заземления.
Удельное сопротивление земли — то сопротивление, которое оказывает куб грунта проходящему через него току. Показатель измеряется в Ом*м. Чем ниже показатель сопротивления, тем более электропроводным считается грунт.
На параметр проводимости влияют разные факторы:
- Химический состав грунта;
- Структура;
- Уровень влажности;
- Климатические условия и пр.
Комплексная оценка грунта проводится еще на этапе изыскательских работ. Полученные данные в дальнейшем ложатся в основу проекта системы заземления.
Алгоритм вычисления удельного сопротивления грунта с помощью ИС-20/1:
- Вбить в грунт по прямой несколько штырей. Расположение и глубина стержней определяются на основании нормативов и характеристик участка, но расстояние между ними должно быть одинаковым.
- Подготовить измеритель ИС-20/1 к работе;
- Соединить стержни и прибор с помощью кабелей.
Следует отметить, что приведенные алгоритмы измерений носят теоретический характер и не могут выступать в качестве универсального способа замеров. При работе на объекте нужно учитывать как технические характеристики оборудования, так и свойства системы заземления и объекта.
Таким образом, устройство заземления и выбор метода измерения сопротивления основывается на разных факторах. Для каждого объекта могут подойти разные измерители. Поэтому если возникли сложности или появились вопросы при выборе подходящего оборудования, можно обратиться к менеджерам СОЮЗ-ПРИБОР по электронной почте, телефону или через форму обратной связи.
Измерение сопротивления заземления
Заземление – это уравнивание потенциалов цепи заземления с потенциалом земли, путем объединения с землей. При заземлении объединяется проводом корпус микроволновой печи или корпус электрического щитка с землей. Заземление необходимо для защиты человека от удара электрическим током из-за неисправной стиральной машины или неисправной микроволновой печи, когда человек коснется их корпуса. Заземление нужно если рядом электричество и вода, например неисправный электрический бойлер без заземления может ударить током через кран. Заземление может спасти вам жизнь. Если у вас в розетке в ванной есть заземления и установлено УЗО, то при попадании воды на удлинитель ток не убьет вас, всего лишь выключится свет.
Сопротивления заземления — это сопротивление между цепью заземления и землей. Данная величина измеряется в Ом и должна стремиться к нулю. Идеальное значение возможно только теоретически, поскольку любой проводник создает определенное сопротивление.
Измерение сопротивления заземления дает возможность узнать технические состояние, контура заземления и позволяет определить уровень безопасность электрической сети. Измерять сопротивление заземление нужно после ввода здания или объекта. Далее проверка заземления проводится на основании п. 2.7.9. ПТЭЭП согласно плану проверок на объект. Измерять сопротивление заземления необходимо не менее одного раза в 12 лет. Осмотр заземляющего контура должен проводиться не менее двух раз в год.
Измерение сопротивление металлосвязи, защитных проводников заземления проводится согласно ГОСТ Р 50571.16 по двухпроводному и четырех проводному методу. При измерении по двухпроводному методу не учитывается сопротивление самих проводов и переходных сопротивлений крокодилов. В измерителе сопротивления заземления ИС-20 имеется возможность исключить влияния сопротивления измерительных проводов, при измерении двухпроводным способом.
Как измерять сопротивление заземления/ Рассмотрим процесс измерения сопротивления заземления с помощью прибора ИС-20. Измерение проводится согласно ГОСТ Р 50571.16-2007 Электроустановки низковольтные Часть 6 Испытания. Измерение сопротивление заземлителя с помощью штырей по четырех проводному методу
- Необходимо отключить заземлитель от шины заземления.
- К заземлителю подсоединить измерительные провода к разъемам Т1 и П1. Измерительный провод Т1 компенсирует сопротивление измерительного кабеля П1.
- Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с разъемом П2.
- Ттоковый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
- Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
- Начать измерение, нажав кнопку Rx.
Измерение сопротивление заземлителя с помощью штырей по трехпроводному методу
- Необходимо отключить заземлитель от шины заземления.
- К заземлителю подсоединить измерительный провод к разъему П1.
- Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с разъемом П2.
- Ттоковый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
- Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
- Начать измерение, нажав кнопку Rx.
Измерение сопротивления заземлителя с применением измерительных клещей по четырехпроводному методу
- С измерительными клещами нет необходимости отключать заземлитель от шины заземления. Прибор компенсирует протекающий по шине ток с помощью измерительных клещей.
- Заземлитель обхватить клещами и подключить к разъему «клещи».
- К заземлителю выше измерительных клещей подсоединить измерительные провода к разъемам Т1 и П1. Измерительный провод Т1 компенсирует сопротивление измерительного кабеля П1.
- Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с раземом П2.
- Токовый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
- Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
- Начать измерение, нажав кнопку Rx.
Измерение сопротивления заземлителя с применением измерительных клещей по трехпроводному методу
- С измерительными клещами нет необходимости отключать заземлитель от шины заземления. Прибор компенсирует протекающий по шине ток с помощью измерительных клещей.
- Заземлитель обхватить клещами и подключить к разъему «клещи».
- К заземлителю подсоединить измерительный провод к разъему П1.
- Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с раземом П2.
- Токовый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
- Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
- Начать измерение, нажав кнопку Rx.
Измерение сопротивления заземления с измерительными клещами и передающими клещами
- С измерительными клещами нет необходимости отключать заземлитель от шины заземления. Прибор компенсирует протекающий по шине ток с помощью измерительных клещей.
- Заземлитель обхватить измерительными клещами и подключить к разъему П1.
- Клещами передающими обхватить шину заземления не менее чем через 30 см от измерительных клещей. Передающие клещи позволяют проводить измерение сопротивления заземления без штырей, где уложен асфальт. Если схема заземления многоэлементная, показания будут завышенные, т.к. измерение включают все элементы заземления.
- Переключить прибор в режим измерения двумя клещами, убедиться величина тока в шине заземления не более 2 А.
- Начать измерение, нажав кнопку Rx.
Измерение удельного сопротивления грунта
Удельное сопротивление грунта определяется по методике Вернера. Согласно этой методике штыри втыкают на одинаковом расстоянии d по прямой линии. Расстояние между штырями d должно быть более 5 раз больше глубины штырей. Удельное сопротивление грунта измеряется в Ом*м. Штыри 4 штуки соединить с прибором измерительными проводами к разъемам Т1, П1, П2, Т2.
Нормы сопротивления заземления электроустановок регламентируются ПЭЭП. Правила эксплуатации электроустановок потребителей для приборов напряжением питания до 1000 В таблица 42. Для приборов с напряжением питания 220 В и 380 В с заземленной нейтралью сопротивление заземления на вводе должно быть не более 30 Ом. При удельном сопротивлении грунта более 100 Ом*м сопротивление заземления вычисляется по формуле 0,3 от удельного сопротивления грунта. Для грунта с удельным сопротивлением 300 Ом*м допустимое сопротивление заземления до 90 Ом.
Измерение сопротивления заземления рекомендуется проводить в летнее время года с сухим грунтом и в зимнее время года когда грунт промерз, в этом случае удельное сопротивление грунта максимально. При изменении температуры грунта с 0 до -5 градусов, удельное сопротивление грунта возрастает в 8 раз. При влажном грунте удельное сопротивление уменьшается в разы, что положительно влияет на сопротивление заземления. Сопротивление заземления не должно превышать нормативов в любую погоду.
Геодезические измерения
Измерениями в геодезии называется последовательность действий, выполняемых за счет технологий и профильного оборудования с целью получения значений физических величин.
Результатом работы является определение координат точек, измеряемых в заданной системе. Данные прямо или косвенно связаны с земной поверхностью, имеют краткий или развернутый формат. В рамках прямых замеров используются равноточные приборы и вспомогательные инструменты. Искомые значения формируются в результате непосредственных замеров. Косвенные измерения проводятся при невозможности прямых. Требуемый показатель высчитывается через функциональную зависимость значений, полученных прямым методом.
Геодезические измерения: виды и области
Выделяют 10 видов геодезических измерений. Каждый обладает особенностями, заслуживает отдельного рассмотрения.
- Топографическая съемка. Наиболее востребованная категория работ. Объектом геодезических измерений выступает поверхность земли в заданном районе. Геодезисты составляют план местности, учитывают особенности рельефа, параметры растительности и типы инженерных сетей на участке. При проведении таких геодезических измерений используются следующие разновидности масштабов:
- численный;
- вербальный;
- поперечный;
- линейный. Два последних метода масштабирования задействуются наиболее часто. Они позволяют получить качественную топографическую основу, содержащую минимум погрешностей. Интерпретация геодезических измерений выполняется через специальные программы. ПО генерирует детализированную цифровую картинку, поддерживаемую большинством инженерных САПР: Компас 3D, AutoCAD и пр.
- Координатные измерения. Вид измерений, связанный с позиционированием точек в определенной системе координат. Подход востребован при тахеометрической съемке и спутниковом наблюдении. Он обладает приемлемой точностью, позволяет измерять объекты значительных размеров.
- Высотные измерения. Тип геодезических измерений, предназначенный для определения высотных отметок. С его помощью устанавливается разница между высотами точек, производится обследование горных районов.
- Линейные измерения. Посредством линейных измерений определяется расстояние между точками или объектами наблюдения. Возможны замеры сторон объектов, построение коротких маршрутов без учета особенностей рельефа.
- Угловые измерения. Вид геодезических измерений на базе горизонтальных и вертикальных углов. Метод актуален для работы с линиями и плоскостями, подразумевает необходимость дополнительных вычислений.
- Астрономо-геодезические измерения. Комплекс измерений, позволяющих позиционировать населенные пункты и инфраструктурные объекты в рамках конкретной местности.
- Базисные измерения. Разновидность геодезических измерений, способствующих вычислению опорной базисной стороны посредством профильного оборудования.
- Геодинамические измерения. Метод, упрощающий решение задач в части определения геодезических пунктов. При проведении работ учитываются позиции исходных точек и временные факторы.
- Гироскопические измерения. Такой способ работ предполагает комплексные мероприятия по расчету дирекционных углов посредством гироскопа.
- Створные измерения. Действия, определяющие степень отклонения точки от створной линии. Метод позволяет установить фактическое положение линии очистного забоя при работе с шахтами.
Составляющие факторы геодезических измерений
Проведение геодезических измерений осуществляется при соблюдении следующих требований:
- присутствует объект и субъект измерений;
- геодезические работы выполняют квалифицированные специалисты с должными знаниями и навыками;
- задействуются поверенные приборы и инструменты, соответствующие выбранному способу;
- соблюдается методология съемки;
- внешние условия не препятствуют полноценному проведению работ.
Несоблюдение перечисленных условий приводит к неравноточным измерениям. Они не могут применяться в науке, проектировании и статистике.
Характеристики и дальнейшая классификация измерений
Установленная классификация геодезических измерений подразумевает использование двух параметров.
- Количественный показатель. Объем проведенных замеров, связанных с определением углов, высот, длин и прочих значений.
- Качественный показатель (точность результатов). По степени точности замеры подразделяются на технически точные, точные и высокоточные. Для достижения высокого качественного показателя используются приборы одинакового класса точности, обеспечиваются равные условия проведения замеров, привлекаются инженеры с богатым опытом.
Стандартная классификация включает в себя необходимые, достаточные и избыточные измерения. Количество проводимых операций зависит от применяемого способа. В одних случаях достаточно единичной процедуры, в других — требуются проверочные мероприятия.
Заказать геодезические измерения в Москве можно в компании «ИР-Проект». Организация специализируется на проведении изысканий и проектировании коммерческих объектов недвижимости.
Клиенты получают ряд преимуществ:
- Профессиональный подход. Геодезические работы доверяются компетентным исполнителям, которые соблюдают требования отраслевых нормативов, учитывают особенности площадки и пожелания заказчика. Для решения сложных задач на объект отправляется группа инженеров.
- Использование качественного оборудования. При проведении замеров задействуется поверенный инструмент. Это гарантирует высокую точность результатов, позволяет получить актуальные и достоверные сведения.
- Прозрачные расценки. Стоимость услуг прописана в прайс-листе, коррелирует с объемом и сложностью работ. Гарантировано отсутствие дополнительных сборов и комиссий.
- Многообразие дополнительных услуг. Наряду с геодезическими работами клиенты могут заказать технические условия, получение согласований, проведение геологических и экологических изысканий.
Уточнить параметры сотрудничества помогут консультанты компании. Они расскажут об особенностях услуг, порекомендуют подходящие решения. Связаться со специалистами можно по телефону или электронной почте.