Что является искусственным источником света
Перейти к содержимому

Что является искусственным источником света

  • автор:

Искусственные источники света (до электричества)

искусственные источники света

Вся история развития человечества представляет собой преодоление ограничений наложенных на него природой. Сейчас много говорят о том, что, дескать, такое взаимоотношение с окружающим миром — причина многих бед современной цивилизации, однако не будь этого преодоления, этой борьбы человека с природой, не было бы и самой цивилизации, которая позволяет в рамках себя вести такие дискуссии.

Одним из древнейших завоеваний в этой непрекращающейся войне человечества за право вести тот образ жизни, который оно для себя выбирает, было, открытие искусственного освещения. Это открытие состоялось тогда, когда человек еще не умея добывать огонь, научился его поддерживать и сохранять. Таким образом, он обрел помимо источника тепла, необходимого для обеспечения комфортного температурного режима и приготовления пищи, и оружия против диких животных, еще и источник света, позволивший видеть в темное время суток и в местах, куда вообще не проникает естественный свет. Таким образом, искусственное освещение расширило пределы активности человека во времени и пространстве.

Современному человеку довольно сложно представить себе образ жизни своего не такого уж далекого предка, полностью подчиненный природным циклам смены дня и ночи, а для наших широт, еще и зимы и лета (когда продолжительность светового дня колеблется в широких пределах). Единственным подспорьем для слабых человеческих глаз служил неверный свет лучины, или в лучшем случае свечи.

Итак, первым источником искусственного света была горящая ветка дерева, просуществовавшая в виде факела и лучины много тысячелетий. После этого, на протяжении длительного времени, вплоть едва ли не до 19 века прогресс в области искусственного освещения сводился к изобретению масляной лампы и свечи. Несмотря на то, что количество разнородных источников искусственного света было невелико (масляная лампа, использующая жидкое горючее, свеча, использующая в качестве горючего вещество, которое можно назвать «твердым» при нормальных условиях), вариантов их исполнения существовало великое множество, от примитивной плошки с плавающим в налитой в нее горючей жидкости фитилем, до принципиально идентичных, но конструктивно куда более сложных светильников, которые зачастую совмещали в себе функции освещения и, например, отсчета времени.

Само по себе изобретение свечи стало закономерным итогом распространения масляных светильников. Дело в том, что горючим материалом в масляной лампе была либо минеральная горючая жидкость, например нефть (редко), либо растительное масло (наиболее часто), либо животный жир. Однако, жир большинства животных, при нормальных для человека условиях, как правило малотекуч, а следовательно не способен пропитывать фитиль и создавать капиллярный эффект, необходимый для подъема горючего по фитилю, но раз нет возможности поднимать горючее к фитилю, надо опустить фитиль к горючему, от понимания этого, до появления первых сальных свечей оставался один шаг. Этот шаг был сделан, по-видимому, на Дальнем Востоке и в Юго-Восточной Азии задолго до новой эры. Первые свечи представляли из себя отрезки стебля бамбука, заполненные жиром, вдоль вертикальной оси которых помещался фитиль сделанный из растительных волокон. Позднее научились обрабатывать жир таким образом, чтобы он был способен сохранять свою форму самостоятельно, в широком диапазоне температур, там, где позволяли местные ресурсы жир заменяли воском.

По мере развития химии появлялись новые материалы для изготовления свечей, в 1816 году началось производство стеариновых, а в 1840 и парафиновых свечей. Тот факт, что такое производство сохраняется и по сей день, и отнюдь не только для ритуальных нужд, говорит о том, насколько революционным событием было изобретение этого источника искусственного освещения. Действительно, свеча, в сравнении с масляным светильником компактна и неприхотлива, в сравнении с лучиной — имеет более ровное пламя и большую продолжительность горения при одинаковых размерах. Свеча позволила сделать переносной, защищенный от погодных условий фонарь, впервые по-настоящему ярко осветить большое помещение, путем объединения множества свечей на одной платформе, ведь именно для размещения свечей были созданы первые люстры.

Однако на этом стоит закончить оду свече и упомянуть ее естественные недостатки, являющиеся продолжением ее достоинств.

Во-первых, конечно, свеча могла гореть долго, но при этом, чем дольше она должна была гореть, тем больше по размерам она должна была быть, и если топливный резервуар у масляного светильника мог располагаться в относительном отдалении от зоны горения, то для свечи такое разделение было невозможно. Поэтому на протяжении тысяч лет продолжалось параллельное использование свечей и масляных ламп. Там где возникала нужда на небольшой срок ярко осветить помещение, или был необходим мобильный, относительно пожаробезопасный и компактный источник света, применяли свечи. В тех же случаях, когда требовалось продолжительное, иногда в течение многих суток, непрерывное горение, использовались масляные светильники. Здесь следует упомянуть еще и о том, что стоимость света свечи и масляной лампы была, очевидно, разной и менялась во времени, но рассмотрение этого аспекта лежит вне тематики данной статьи.

К концу 18 века развитие производства, рост городов и как следствие изменение ритма жизни вызвали необходимость, а достижения науки и технологии обработки материалов обеспечили возможность увеличения яркости существующих источников искусственного света. И тут проявилось «во-вторых». Увеличить яркость свечения можно было, обеспечив более полное сгорание топлива в светильнике за счет лучшего подвода воздуха к зоне горения, что технически проще было осуществить в случае ее неподвижности, у свечи же зона горения перемещалась весьма ощутимо. Именно поэтому в начале 19 века свеча начала уступать свои позиции там, где важна была яркость освещения.

Начался непродолжительный золотой век газовых и «масляных» ламп (слово масляные взято здесь в кавычки потому, что в этот период топливом стали служить скипидары и продукты нефтепереработки — керосин и бензин).

Как уже было сказано выше, увеличения яркости свечения горящего топлива можно добиться улучшением его сгорания путем оптимизации подвода воздуха. Для этого в 1784 году, проживавший в Великобритании швейцарец Эми Агранд применил (в запатентованной им в этом году лампе) принципы, которые соблюдались в большинстве позднейших конструкций — кольцевой фитиль, защитное стекло, внешний приток воздуха. Кольцевой фитиль позволял осуществлять подачу необходимого для горения топлива воздуха внутрь пламени. Стекло предохраняло пламя от сквозняков. Зазор между стеклом и кольцевым фитилем позволял создать дополнительную тягу и обеспечить приток воздуха к внешней стороне пламени.

В принципе, все позднейшие усовершенствования лампы Агранда сводились к оптимизации формы стеклянной колбы, конструктива фитиля, путей подвода внешнего воздуха, совершенствованию способов подачи горючей жидкости к зоне горения и улучшению светильных свойств самой горючей жидкости.

Единственное фундаментальное улучшение конструкции таких ламп, сделанное после Агранда, это появление калильной сетки, позволившей резко повысить яркость свечения за счет более полного сгорания горючего на ней и свечения самой сетки.

Честь ее изобретения принадлежит Карлу Велсбаху, который в 1885 году предложил «Осветительным приспособлением для газовых и иных горелок«, каковым предложением и завершилось, собственно, принципиальное совершенствование ламп, использующих для освещения горючие вещества. Само по себе изобретение заключалось в том, чтобы специально обработанную ткань поместить в пламя горелки. Специальная обработка сводилась (и сводится сейчас) к тому, что хлопчатобумажная ткань пропитывалась смесью из 99% окиси тория и 1% церия, затем сжигалась, а оставшаяся тонкая структура помещалась в смесь коллодия, эфира, камфары и касторового масла для придания сетке прочности. В результате этого сетка приобретала жаростойкость, способность ярко светиться в нагретом состоянии и способность не рассыпаться в прах при транспортировке.

В заключение разговора об источниках света, использующих в качестве топлива горючие жидкости, нельзя не упомянуть и о керосиновых лампах, которые конечно уступают своим калильным «сестрам» по яркости освещения, но в силу своей неприхотливости, наряду с ними, продолжают оставаться основным источником искусственного света едва ли не для половины населения Земли еще и в двадцать первом веке.

Говоря о неэлектрических источниках света невозможно обойти стороной газовые светильники. Сейчас трудно в это поверить, но в середине 19 века светильный газ считался наиболее прогрессивным топливом для освещения, а его производство — серьезной отраслью индустрии тогдашних ведущих держав. Светильный газ получался перегонкой каменного угля. Для хранения светильного газа строили специальные сооружения — газгольдеры, которые были неотъемлемой деталью пейзажа городов, где было устроено газовое освещение.

Сам по себе газовый светильник (рожок) представлял собой трубку того или иного профиля снабженную механизмом регулирования подачи газа с возможностью полного ее прекращения, а также, иногда, системой позволявшей увеличить приток воздуха к зоне горения (аналогично масляным лампам приток мог быть внутренним — по трубке меньшего диаметра расположенной внутри газовой, и внешним). Изобретенная фон Велсбахом калильная сетка также нашла свое применение в газовых светильниках, но в 1885 году уже просматривалась перспектива внедрения электрического освещения. К тому времени всем уже были очевидны недостатки использования газа для нужд освещения — его токсичность, взрыво- и пожароопасность, как светильников его использующих, так и магистралей подвода газа к ним, и самих хранилищ этого газа.

Однако, газовое освещение — неотъемлемая часть истории развития искусственного света в целом и уличного освещения в частности. О размахе производства светильного газа и его использования для нужд освещения косвенно свидетельствует тот факт, что первый завод по его производству в России был построен в 1838 году, а еще в 1872 году (т.е. совсем незадолго до начала внедрения электрического освещения) были проведены мероприятия по устройству газового освещения Киева. Теме истории развития уличного освещения мы обязательно посвятим отдельную статью.

В заключение следует сказать, что, в общем и целом, к концу 19 века неэлектрические источники света, чей принцип работы был основан на сжигании горючих тел, достигли, видимо, совершенства. Их дальнейшее развитие на существующем технологическом уровне не представляется возможным, однако они заняли и удерживают свою нишу среди прочих источников света. Они используются там, где необходима автономность, в отрыве от цивилизации и предоставляемых ей благ, таких как, например, электричество. Об источниках света использующих электричество, об истории их изобретения, развития и совершенствования пойдет речь в одной из следующих статей.

Авторский материал. Копирование полностью или частично разрешено только при наличии активной (кликабельной) ссылки на эту страницу и указании источника: «сайт 220.ru».

Искусственные источники света

Искусственные источники света — технические устройства различной конструкции и различными способами преобразования энергии, основным назначением которых является получение светового излучения (как видимого, так и с различной длиной волны, например, инфракрасного). В источниках света используется в основном электроэнергия, но также иногда применяется химическая энергия и другие способы генерации света (например, триболюминесценция, радиолюминесценция и др.). В отличие от искусственных источников света, естественные источники света представляют собой природные материальные объекты: Солнце, Луна, Полярные сияния, светлячки, молнии и проч.

История развития искусственных источников света

Древнее время — свечи, лучины и лампады

Самым первым из используемых людьми в своей деятельности источником света был огонь (пламя) костра. С течением времени и ростом опыта сжигания различных горючих материалов люди обнаружили, что большее количество света может быть получено при сжигании каких либо смолистых пород дерева, природных смол, масел и воска. С точки зрения химических свойств подобные материалы содержат больший процент углерода по массе и при сгорании сажистые частицы углерода сильно раскаляются в пламени и излучают свет. В дальнейшем при развитии технологий обработки металлов, развития способов быстрого зажигания с помощью огнива позволили создать и в значительной степени усовершенствовать первые независимые источники света, которые можно было устанавливать в любом пространственном положении, переносить и перезаряжать горючим. А также определенный прогресс в переработке нефти, восков, жиров и масел и некоторых природных смол позволил выделять необходимые топливные фракции: очищенный воск, парафин, стеарин, пальмитин, керосин и т. п. Такими источниками стали прежде всего свечи, факелы, масляные, а позже нефтяные лампы и фонари. С точки зрения автономности и удобства, источники света, использующие энергию горения топлив, очень удобны, но с точки зрения пожаробезопасности (открытое пламя), выделений продуктов неполного сгорания (сажа, пары топлива, угарный газ) представляют известную опасность как источник возгорания. История знает великое множество примеров возникновения больших пожаров, причиной которых были масляные лампы и фонари, свечи и пр.

Газовые фонари

Основная статья: Газовая лампа

Газовый фонарь в Вроцлаве (Польша)

Дальнейший прогресс и развитие знаний в области химии, физики и материаловедения, позволили людям использовать также и различные горючие газы, отдающие при сгорании большее количество света. Газовое освещение было достаточно широко развито в Англии и ряде европейских стран. Особым удобством газового освещения было то, что появилась возможность освещения больших площадей в городах, зданий и др., за счёт того что газы очень удобно и быстро можно было доставить из центрального хранилища (баллонов) с помощью прорезиненных рукавов (шлангов), либо стальных или медных трубопроводов, а также легко отсекать поток газа от горелки простым поворотом запорного крана. Важнейшим газом для организации городского газового освещения стал так называемый «светильный газ», производимый с помощью пиролиза жира морских животных (китов, дельфинов, тюленей и др.), а несколько позже производимый в больших количествах из каменного угля при коксовании последнего на газосветильных заводах.

Одним из важнейших компонентов светильного газа, который давал наибольшее количество света, был бензол, открытый в светильном газе М. Фарадеем. Другим газом, который нашёл значительное применение в газосветильной промышленности, был ацетилен, но ввиду его значительной склонности к возгоранию при относительно низких температурах и большим концентрационным пределам воспламенения, он не нашёл широкого применения в уличном освещении и применялся в шахтерских и велосипедных «карбидных» фонарях. Другой причиной, затруднившей применение ацетилена в области газового освещения, была его исключительная дороговизна в сравнении с светильным газом.

Параллельно с развитием применения самых разнообразных топлив в химических источниках света, совершенствовалась их конструкция и наиболее выгодный способ сжигания (регулирование притока воздуха), а также конструкция и материалы для усиления отдачи света и питания (фитили, газокалильные колпачки и др.). На смену недолговечным фитилям из растительных материалов(пенька) стали применять пропитку растительных фитилей борной кислотой и волокна асбеста, а с открытием минерала монацита обнаружили его замечательное свойство при накаливании очень ярко светиться и способствовать полноте сгорания светильного газа. В целях повышения безопасности использования рабочее пламя стали ограждать металлическими сетками и стеклянными колпаками различной формы.

Появление электронных источников света

Дальнейший прогресс в области изобретения и конструирования источников света в значительной степени был связан с открытием электричества и изобретением источников тока. На этом этапе научно-технического прогресса стало совершенно очевидно, что необходимо для увеличения яркости источников света увеличить температуру области, излучающей свет. Если в случае применения реакций горения разнообразных топлив на воздухе температура продуктов сгорания достигает 1500—2300 °C, то при использовании электричества температура может быть ещё значительно увеличена. При нагревании электрическим током различных токопроводящих материалов с высокой температурой плавления они излучают видимый свет и могут служить в качестве источников света той или иной интенсивности. Такими материалами были предложены: графит (угольная нить), платина, вольфрам, молибден, рений и их сплавы. Для увеличения долговечности электрических источников света их рабочие тела (спирали и нити) стали размещать в специальных стеклянных баллонах (лампах), вакуумированных или заполненных инертными либо неактивными газами (водород, азот, аргон и др.). При выборе рабочего материала конструкторы ламп руководствовались максимальной рабочей температурой нагреваемой спирали, и основное предпочтение было отдано углероду (лампа Лодыгина, 1873 год) и в дальнейшем вольфраму. Вольфрам и его сплавы с рением и по настоящее время являются наиболее широко применяемыми материалами для изготовления электрических ламп накаливания, так как в наилучших условиях они способны быть нагреты до температур в 2800-3200 °C. Параллельно с работой над лампами накаливания, в эпоху открытия и использования электричества также были начаты и значительно развиты работы по электродуговым источником света (свеча Яблочкова) и по источникам света на основе тлеющего разряда. Электродуговые источники света позволили реализовать возможность получения колоссальных по мощности потоков света (сотни тысяч и миллионы кандел), а источники света на основе тлеющего разряда — необычайно высокую экономичность. В настоящее время наиболее совершенные источники света на основе электрической дуги — криптоновые, ксеноновые и ртутные лампы, а на основе тлеющего разряда в инертных газах (гелий, неон, аргон, криптон и ксенон) с парами ртути и другие. Наиболее мощными и яркими источниками света в настоящее время являются лазеры. Очень мощными источниками света также являются разнообразные пиротехнические осветительные составы, применяемые для фотосъемки, освещения больших площадей в военном деле (фотоавиабомбы, осветительные ракеты и осветительные бомбы).

Типы источников света

Для получения света могут быть использованы различные формы энергии, и в этой связи можно указать на основные виды (по утилизации энергии) источников света.

  • Электрические: Электрический нагрев тел каления или плазмы. Джоулево тепло, вихревые токи, потоки электронов или ионов.
  • Ядерные: распад изотопов или деление ядер.
  • Химические: горение (окисление) топлив и нагрев продуктов сгорания или тел каления.
  • Электролюминесцентные: непосредственное преобразование электрической энергии в световую (минуя преобразование энергии в тепловую) в полупроводниках (светодиоды, лазерные светодиоды) или люминофорах, преобразующих в свет энергию переменного электрического поля (с частотой обычно от нескольких сотен Герц до нескольких Килогерц),либо преобразующих в свет энергию потока электронов (катодно-люминесцентные
  • Биолюминесцентные: бактериальные источники света в живой природе.

Применение источников света

Источники света востребованы во всех областях человеческой деятельности — в быту, на производстве, в научных исследованиях и т. п. В зависимости от той или иной области применения к источникам света предъявляются самые разные технические, эстетические и экономические требования, и подчас отдается предпочтение тому или иному параметру источника света или сумме этих параметров.

Опасные факторы источников света

Источники света той или иной конституции очень часто сопровождаются наличием опасных факторов, главными из которых являются:

  • Открытое пламя.
  • Яркое световое излучение, опасное для органов зрения и открытых участков кожи.
  • Тепловое излучение и наличие раскаленных рабочих поверхностей, способных привести к ожогу.
  • Высокоинтенсивное световое излучение, которое может привести к возгоранию, ожогу и ранению — излучение лазеров, дуговых ламп и др.
  • Горючие газы или жидкости.
  • Высокое напряжение питания.
  • Радиоактивность.

Типовые параметры некоторых источников света

Сила света типовых источников:

Источник Мощность, Вт Примерная сила света, кд Цветовая температура, К КПД, % Наработка на отказ, ч
Свеча 1
Современная (2006 г) лампа накаливания 100 100 1000
Обычный светодиод 0.015 0.001 100 000
Сверхъяркий светодиод 2,4 12 100 000
Современная (2006 г) флюоресцентная(люминесцентная) лампа 20 100 15 000
Электродуговая ксеноновая лампа до 100 кВт
Лампа-вспышка до 10 кВт
Электродуговая ртутная лампа до 300 кВт
Ядерный взрыв (20Кт) 2,1·10 21
Термоядерный взрыв (50Мт) 5,3·10 24
Первый рубиновый лазер 0,1
Категория тип Световая отдача(Люмен/Ватт) КПД% [1]
На основе горения Свеча 0.3 [2] 0.04 %
газовая горелка 2 [3] 0.3 %
Лампа накаливания 5Вт лампа накаливания (120 В) 5 0.7 %
40Вт лампа накаливания (120 В) 12.6 [4] 1.9 %
100Вт лампа накаливания (120 В) 16.8 [5] 2.5 %
100Вт лампа накаливания (220 В) 13.8 [6] 2.0 %
100Вт галогенная лампа (220 В) 16.7 [7] 2.4 %
2.6Вт галогенная лампа (5.2 В) 19.2 [8] 2.8 %
Кварцевая галогенная лампа (12-24 В) 24 3.5 %
Высокотемпературная лампа 35 [9] 5.1 %
Люминесцентная лампа 5-24Вт компактная флюоресцентная 45-60 [10] 6.6-8.8 %
T12 линейная, с магнитным балластом 60 [11] 9 %
T8 линейная, с электронным балластом 80-100 [11] 12-15 %
T5 линейная 70-100 [12] 10-15 %
Светодиод белый светодиод 10 — 97 [13] [14] [15] 1.5-13 %
белый OLED 102 [источник не указан 41 день] 15 %
Прототип светодиода до 254 [16] до 35 %
Дуговая лампа Ксеноновые газоразрядные лампы 30-50 [17] [18] 4.4-7.3 %
Дуговые ртутные металлогалогенные лампы 50-55 [17] 7.3-8.0 %
Газоразрядная лампа Натриевая лампа высокого давления 150 [19] 22 %
Натриевая лампа низкого давления 183 [19] — 200 [20] 27-29 %
Лампа на галогенидах металлов 65-115 [21] 9.5-17 %
1400Вт Серная лампа 100 15 %
Теоретически возможно 683.002 100 %

См. также

  • Свеча
  • Факел
  • Лучина
  • Масляная лампа
  • Керосиновая лампа
  • Лампа накаливания
  • Ксеноновые газоразрядные лампы
  • Натриевые газоразрядные лампы
  • Ртутные газоразрядные лампы
  • Металлогалогенная лампа
  • Светодиодные светильники
  • Эксилампа
  • Люминесцентная лампа
  • Компактная люминесцентная лампа
  • Газоразрядная лампа

Примечания

  1. Defined such that the maximum value possible is 100 %.
  2. 1 candela*4π steradians/40 W
  3. Waymouth, John F., «Optical light source device», US patent # 5079473, published September 8, 1989, issued January 7, 1992 . col. 2, line 34.
  4. Keefe, T.J.The Nature of Light (2007). Архивировано из первоисточника 1 июня 2012.Проверено 5 ноября 2007.
  5. How Much Light Per Watt?
  6. Bulbs: Gluehbirne.ch: Philips Standard Lamps (German)
  7. Osram halogen (German) (PDF). www.osram.de. (недоступная ссылка — история) Проверено 28 января 2008. (недоступная ссылка)
  8. Osram Miniwatt-Halogen. www.ts-audio.biz. Архивировано из первоисточника 17 февраля 2012.Проверено 28 января 2008. (недоступная ссылка)
  9. Klipstein, Donald L.The Great Internet Light Bulb Book, Part I (1996). Архивировано из первоисточника 1 июня 2012.Проверено 16 апреля 2006.
  10. China energy saving lamp. Архивировано из первоисточника 17 февраля 2012.Проверено 16 апреля 2006.
  11. 12 Federal Energy Management Program (December 2000). «How to buy an energy-efficient fluorescent tube lamp» (U.S. Department of Energy).
  12. Department of the Environment, Water, Heritage and the Arts, AustraliaEnergy Labelling—Lamps. (недоступная ссылка — история) Проверено 14 августа 2008.
  13. Klipstein, Donald L.The Brightest and Most Efficient LEDs and where to get them. Don Klipstein’s Web Site. Архивировано из первоисточника 17 февраля 2012.Проверено 15 января 2008.
  14. Cree launches the new XLamp 7090 XR-E Series Power LED, the first 160-lumen LED!. Архивировано из первоисточника 17 февраля 2012.
  15. Cree XM-L;. Архивировано из первоисточника 3 июня 2012.
  16. Cree Sets New R&D Performance Record with 254 Lumen-Per-Watt Power LED. Cree, Inc. Press Release (2012-04-12). Архивировано из первоисточника 27 июня 2012.
  17. 12Technical Information on Lamps (pdf). Optical Building Blocks. (недоступная ссылка — история) Проверено 14 октября 2007. Note that the figure of 150 lm/W given for xenon lamps appears to be a typo. The page contains other useful information.
  18. OSRAM Sylvania Lamp and Ballast Catalog. — 2007.
  19. 12LED or Neon? A scientific comparison.
  20. Why is lightning coloured? (gas excitations). Архивировано из первоисточника 17 февраля 2012.
  21. The Metal Halide Advantage. Venture Lighting (2007). Архивировано из первоисточника 17 февраля 2012.Проверено 10 августа 2008.
Lighting на Викискладе ?
Источники искусственного света
Накаливания Лампа накаливания • Галогенная лампа
Флуоресцентные Люминесцентная лампа (компактная люминесцентная лампа) • Катодолюминесцентная лампа • Индукционная лампа • Ртутная лампа • Лампа чёрного света
Газоразрядные Лампы высокой интенсивности • Неоновая лампа • Натриевая газоразрядная лампа • Ксеноновая лампа-вспышка • Газосветные лампы • Безэлектродная лампа • Плазменная лампа • Плазменная лампа с внешними электродами
Электродуговые Угольная дуговая лампа • Ксеноновая дуговая лампа • Свеча Яблочкова • Металлогалогенная лампа
На сгорании Лучина • Факел • Свеча • Масляная лампа • Газовая лампа • Ацетиленовая лампа • Керосиновая лампа • Калильная сетка • Друммондов свет
Полупроводниковые Светодиоды (светодиодная лампа • органический светодиод)
Прочие Серная лампа
Люминесценции Электролюминесценция • Хемилюминесценция • Биолюминесценция • Радиолюминесценция • Сонолюминесценция • Термолюминесценция • Фотолюминесценция (флуоресценция • фосфоресценция) • Триболюминесценция • Кандолюминесценция • Черенковское излучение
Осветительное
оформление
Прожектор • Люстра • Торшер • Бра • Лампочка Ильича • Фонарь (уличный • карманный) • Взрывобезопасная лампа • Плазменная лампа • Электролюминесцентный провод • Лавовая лампа • Оптическое волокно
  • Источники света
  • Оптика
  • Искусственное освещение

Wikimedia Foundation . 2010 .

  • Солнечный (Тверская область)
  • Испанский вояж Степаныча (фильм)

Полезное

Смотреть что такое «Искусственные источники света» в других словарях:

  • Источники света — Искусственные источники света технические устройства различной конструкции и различными способами преобразования энергии, основным предназначением которых является получение светового излучения (как видимого, так и с различной длиной волны,… … Википедия
  • ИСТОЧНИКИ СВЕТА — излучатели электромагнитной энергии в оптической части спектра. Различают источники света естественные (Солнце, атмосферные электрические разряды) и искусственные, превращающие энергию какого либо вида в энергию оптического излучения (лампы… … Большой Энциклопедический словарь
  • Естественные источники света — это природные материальные объекты и явления, основным или вторичным свойством которых является способность испускать видимый свет. В отличие от естественных источников света, искусственные источники света являются продуктом производства человека … Википедия
  • Источники света — излучатели электромагнитной энергии в видимой (или оптической, т. е. не только видимой, но и ультрафиолетовой и инфракрасной) области спектра. Естественными И. с. являются Солнце, Луна, звёзды, атмосферные электрические разряды и др.,… … Большая советская энциклопедия
  • источники света — излучатели электромагнитной энергии в оптической части спектра. Различают источники света естественные (Солнце, атмосферные электрические разряды) и искусственные, превращающие энергию какого либо вида в энергию оптического излучения (лампы… … Энциклопедический словарь
  • ИСТОЧНИКИ СВЕТА — излучатели электромагн. энергии в оптической (т. е. видимой, УФ и ИК) области спектра. Различают И. с. естественные (Солнце, атм. электрич. разряды) и искусственные, превращающие энергию к. л. вида в энергию оптич. излучения (лампы накаливания,… … Большой энциклопедический политехнический словарь
  • ИСТОЧНИКИ СВЕТА — излучатели эл. магн. энергии в оптич. части спектра. Различают И. с. естественные (Солнце, атм. электрич. разряды) и искусственные, превращающие энергию к. л. вида в энергию оптич. излучения (лампы накаливания, люминесцентные лампы, газоразрядные … Естествознание. Энциклопедический словарь
  • ИСТОЧНИКИ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ — (источники света), преобразователи разл. видов энергии в эл. магн. энергию оптич. диапазона с условными границами 1011 1017 Гц, что соответствует длинам волн в вакууме от неск. мм до неск. нм. Естественными И. о. и. явл. Солнце, звёзды,… … Физическая энциклопедия
  • ИСТОЧНИКИ — (1) подземных вод естественные выходы грунтовых (см.) на земную поверхность на суше или под водой. Их называют также родниками, ключами; (2) И. питания функциональная часть аппаратуры, преобразующая и использующая электроэнергию, получаемую от… … Большая политехническая энциклопедия
  • Искусственные спутники Земли — (ИСЗ) космические летательные аппараты, выведенные на орбиты вокруг Земли и предназначенные для решения научных и прикладных задач. Запуск первого ИСЗ, ставшего первым искусственным небесным телом, созданным человеком, был осуществлен в… … Большая советская энциклопедия
  • Обратная связь: Техподдержка, Реклама на сайте
  • �� Путешествия

Экспорт словарей на сайты, сделанные на PHP,
WordPress, MODx.

  • Пометить текст и поделитьсяИскать в этом же словареИскать синонимы
  • Искать во всех словарях
  • Искать в переводах
  • Искать в ИнтернетеИскать в этой же категории

Что является искусственным источником света

От костра до светодиодных светильников

«Теперь мы знаем больше об ужинах при свечах.».

Человечество 1,5 млн. лет назад начало использовать искуственный источник освещения — огонь.
Всего 150 лет назад мы перешли на другие источники света!

Немного истории

С давних времен освещение осуществлялось благодаря костру. С момента, когда люди его обнаружили, ему стали поклоняться и относиться с большим трепетом. Его берегли, т. к. огонь было очень сложно добывать и при его затухании могли произойти невероятные проблемы для всего племени.

Огонь длительное время использовали для освещения. Отличались только среды горения. После открытого огня на полу в пещере, люди стали использовать факелы. Они использовались не продолжительное время, так как сильно нагревали и коптили помещения.

Прогресс дошел до отлития свечей, когда было обнаружено, что в масляной среде огонь горит длительное время. Получение воска было дорогим, в связи с чем, использовались только людьми, приближенными к правителю, имеющие власть.

Люди, не способные позволить себе их, пользовались лучинами. Это деревянная палочка, которая зажигалась и ставилась в специальную державку. Под лучину ставилась тара с водой. Это требовалось для увеличения количества света и предотвращения возможного возгорания. Пользовались ими несколько столетий, пока не появились газовые и топливные лампы, на керосине или том же масле. Они были вредными для здоровья, но давали больше света.

Так продолжалось до середины 19 века, когда великие умы произвели первую лампу накаливания.

Источники света

Искусственные источники света — технические устройства различной конструкции, преобразовывающие энергию в световое излучение. В источниках света используется в основном электроэнергия, но так же иногда применяется химическая энергия и другие способы генерации света (например, триболюминесценция, радиолюминесценция, биолюминесценция и др.).

Источники света, наиболее часто применяемые для искусственного освещения, делят на три группы — газоразрядные лампы, лампы накаливания и светодиоды. Лампы накаливания относятся к источникам света теплового излучения. Видимое излучение в них получается в результате нагрева электрическим током вольфрамовой нити. В газоразрядных лампах излучение оптического диапазона спектра возникает в результате электрического разряда в атмосфере инертных газов и паров металлов, а также за счет явлений люминесценции, которое невидимое ультрафиолетовое излучение преобразует в видимый свет.

В системах производственного освещения предпочтение отдается газоразрядным лампам. Использование ламп накаливания допускается в случае невозможности или экономической нецелесообразности применения газоразрядных.

Основные характеристики источников света:

· номинальное напряжение питающей сети U, B;

· электрическая мощность W, Вт;

· световой поток Ф, лм;

· световая отдача (отношение светового потока лампы к ее мощности) лм/Вт;

· срок службы t, ч;

· Цветовая температура Tc, К.

Лампы накаливания

Лампы накаливания

Лампа накаливания — источник света, в котором преобразование электрической энергии в световую происходит в результате накаливания электрическим током тугоплавкого проводника (вольфрамовой нити). Эти приборы предназначаются для бытового, местного и специального освещения. Последние, как правило, отличаются внешним видом — цветом и формой колбы. Коэффициент полезного действия (КПД) ламп накаливания составляет около 5-10%, такая доля потребляемой электроэнергии преобразуется в видимый свет, а основная ее часть превращается в тепло. Любые лампы накаливания состоят из одинаковых основных элементов. Но их размеры, форма и размещение могут сильно отличаться, поэтому различные конструкции не похожи друг на друга и имеют разные характеристики.

Существуют лампы, колбы которых наполнены криптоном или аргоном. Криптоновые обычно имеют форму «грибка». Они меньше по размеру, но обеспечивают больший (примерно на 10%) световой поток по сравнению с аргоновыми. Лампы с шаровой колбой предназначены для светильников, служащих декоративными элементами; с колбой в форме трубки — для подсветки зеркал в стенных шкафах, ванных комнатах и т. д. Лампы накаливания имеют световую отдачу от 7 до 17 лм/Вт и срок службы около 1000 часов. Они относятся к источникам света с теплой тональностью, поэтому создают погрешности при передаче сине-голубых, желтых и красных тонов. В интерьере, где требования к цветопередаче достаточно высоки, лучше использовать другие типы ламп. Также не рекомендуется применять лампы накаливания для освещения больших площадей и для создания освещенности, превышающей уровень 1000 Лк, так как при этом выделяется много тепла и помещение «перегревается».

Несмотря на эти ограничения, такие приборы все еще остаются классическим и излюбленным источникам света.

Галогенные лампы накаливания

Галогенные лампы накаливания

Лампы накаливания со временем теряют яркость, и происходит это по простой причине: испаряющийся с нити накаливания вольфрам осаждается в виде темного налета на внутренних стенках колбы. Современные галогенные лампы не имеют этого недостатка благодаря добавлению в газ-наполнитель галогенных элементов (йода или брома).

Лампы бывают двух форм: трубчатые — c длинной спиралью, расположенной по оси кварцевой трубки, и капсульные — с компактным телом накала.

Цоколи малогабаритных бытовых галогенных ламп могут быть резьбовыми (тип Е), которые подходят к обычным патронам, и штифтовые (тип G), которые требуют патронов другого типа.

Световая отдача галогенных ламп составляет 14-30 лм/Вт. Они относятся к источникам с теплой тональностью, но спектр их излучения ближе к спектру белого света, чем у ламп накаливания. Благодаря этому прекрасно «передаются» цвета мебели и интерьера в теплой и нейтральной гамме, а также цвет лица человека.

Галогенные лампы применяются повсюду. Лампы, имеющие цилиндрическую или свечеобразную колбу и рассчитанные на сетевое напряжение 220В, можно использовать вместо обычных ламп накаливания. Зеркальные лампы, рассчитанные на низкое напряжение, практически незаменимы при акцентированном освещении картин, а также жилых помещений.

Люминесцентные лампы

Люминесцентные лампы

Люминесцентные лампы (ЛЛ) — разрядные лампы низкого давления — представляют собой цилиндрическую трубку с электродами, в которую закачаны пары ртути. Эти лампы значительно меньше расходуют электроэнергию, чем лампы накаливания или даже галогенные лампы, а служат намного дольше (срок службы до 20 000 часов). Благодаря экономичности и долговечности эти лампы стали самыми распространенными источниками света. В странах с мягким климатом люминесцентные лампы широко применяются в наружном освещении городов. В холодных районах их распространению мешает падение светового потока при низких температурах. Принцип их действия основан на свечении люминофора, нанесенного на стенки колбы. Электрическое поле между электродами лампы заставляет пары ртути выделять невидимое ультрафиолетовое излучение, а люминофор преобразует это излучение в видимый свет. Подбирая сорт люминофора, можно изменять цветовую окраску испускаемого света.

Разрядные лампы высокого давления

Разрядные лампы высокого давления

Принцип действия разрядных ламп высокого давления — свечение наполнителя в разрядной трубке под действием дуговых электрических разрядов.

Два основных разряда высокого давления, применяемых в лампах — ртутный и натриевый. Оба дают достаточно узкополосное излучение: ртутный — в голубой области спектра, натрий — в желтой, поэтому цветопередача ртутных (Ra=40-60) и особенно натриевых ламп (Ra=20-40) оставляет желать лучшего. Добавление внутрь разрядной трубки ртутной лампы галогенидов различных металлов позволило создать новый класс источников света — металлогалогенные лампы (МГЛ) , отличающиеся очень широким спектром излучения и прекрасными параметрами: высокая световая отдача (до 100 Лм/Вт), хорошая и отличная цветопередача Ra=80-98, широкий диапазон цветовых температур от 3000 К до 20000К, средний срок службы около 15 000 часов. МГЛ успешно применяются в архитектурном, ландшафтном, техническом и спортивном освещении. Еще более широко применяются натриевые лампы . На сегодняшний день это один самых экономичных источников света благодаря высокой светоотдаче (до 150 Лм/Вт), большому сроку службы и демократичной цене. Огромное количество натриевых ламп используется для освещения автомобильных дорог. В Москве натриевые лампы часто из экономии используются для освещения пешеходных пространств, что не всегда уместно из-за проблем с цветопередачей.

Светодиоды

Светодиоды

Светодиод — это полупроводниковый прибор, преобразующий электрический ток в световое излучение. Специально выращенные кристаллы дают минимальное потребление электроэнергии. Великолепные характеристики светодиодов (световая отдача до 120 Лм/Вт, цветопередача Ra=80-85, срок службы до 100 000 часов) уже обеспечили лидерство в светосигнальной аппаратуре, автомобильной и авиационной технике.

Светодиоды применяются в качестве индикаторов (индикатор включения на панели прибора, буквенно-цифровое табло). В больших уличных экранах и в бегущих строках применяется массив (кластер) светодиодов. Мощные светодиоды используются как источник света в фонарях и прожекторах. Так же они применяются в качестве подсветки жидкокристаллических экранов. Последние поколения этих источников света можно встретить в архитектурном и интерьерном освещении, а так же в бытовом и коммерческом.

· Высокая механическая прочность, вибростойкость (отсутствие спирали и иных чувствительных составляющих).

· Длительный срок службы.

· Специфический спектральный состав излучения. Спектр довольно узкий. Для нужд индикации и передачи данных это — достоинство, но для освещения это недостаток. Более узкий спектр имеет только лазер.

· Малый угол излучения — также может быть как достоинством, так и недостатком.

· Безопасность — не требуются высокие напряжения.

· Нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.

· Отсутствие ядовитых составляющих (ртуть и др.) и, следовательно, лёгкость утилизации.

· Недостаток — высокая цена.

· Срок службы: среднее время полной выработки для светодиодов составляет 100000 часов, это в 100 раз больше ресурса лампочки накаливания.

Другие статьи

Цветовая температура

Цветовая температура

Под цветовой температурой мы понимаем насколько желтый или синий оттенок белого света имеет тот или иной источник света в зависимости от значения в градусах Кельвина. За нейтральную цветовую температуру принято считать диапазон 4000-5000К, теплый свет — 2000-3500К и холодный — 5200-10000К.

Газоразрядные лампы

Газоразрядные лампы

Продолжая тему энергосберегающего освещения, стоит упомянуть такие распространенные источники света как газоразрядные лампы. К разрядным источникам света относятся: ртутные лампы, натриевые лампы низкого и высокого давления, металлогалогенные, а так же люминесцентные и ксеноновые лампы. Непосредственно, к энергосберегающим лампам относятся: НЛВД, МГЛ и ЛЛ.

Негативные факторы влияющие на выход из строя трековых светильников

Негативные факторы влияющие на выход из строя трековых светильников

Помимо очевидных причин, таких как: некачественные комплектующие (драйвера, светодиодные модули, соединительные элементы и корпуса приборов), есть косвенные причины, о которых мало кто задумывается, а зря, ведь они могут привести не только к выходу из строя осветительного оборудования, но и к более плачевным последствиям, например пожару в магазине.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *