Как найти напряжение на вольтметре в цепи
Перейти к содержимому

Как найти напряжение на вольтметре в цепи

  • автор:

Как найти напряжение на вольтметре в цепи

Раздел 3 . Электрический ток

� 3.8. Вольтметр и добавочное сопротивление

Большинство измерительных приборов, применяемых для измерений в электрических цепях, реагируют на ток, т.е. по своей природе служат измерителями тока.

Но напряжение и ток, согласно закону Ома, прямо пропорциональны друг другу. Поэтому обе эти величины могут быть измерены с помощью одного и того же прибора. Только шкала прибора в одном случае градуируется на ток, а в другом — на напряжение. Прибор, шкала которого проградуирована в вольтах, называется вольтметром.

Вольтметр включается в цепь параллельно тому участку цепи, напряжение на котором он измеряет. Вольтметр измеряет напряжение между двумя точками цепи, существовавшее между ними до того, как вольтметр был подключен. При этом сам вольтметр при подключении образует новый участок цепи, параллельный исследуемому.

Каким же сопротивлением должен обладать вольтметр, чтобы изменения напряжений в цепи при его подключении были незначительными?

Пусть сопротивление проводника между точками А и С равно R АС, а сопротивление вольтметра — R. После подключения вольтметра сопротивление R х участка цепи между точками А и С можно найти из равенства:

Приведем эту формулу к виду, удобному для исследования:

откуда видно, что сопротивление R х тем меньше отличается от RАС, чем меньше дробь , т.е. чем больше сопротивление вольтметра по сравнению с сопротивлением участка цепи, на концах которого измеряется напряжение. Если это условие выполнено, то напряжение, измеряемое вольтметром, мало отличается от напряжения, существовавшего до подключения вольтметра.

Итак, вольтметр можно применять для измерения напряжения на тех участках цепи, сопротивление которых мало по сравнению с сопротивлением самого вольтметра.

Каждый измерительный прибор изготовляют, рассчитывая его на определенный максимальный для него ток. Поэтому для каждого измерительного прибора существует предельное значение измеряемой им величины тока или напряжения. Существуют амперметры на 1; 5; 10; 50 А и т.д.; также имеются и вольтметры на различные напряжения. Но всегда оказывается возможным расширить пределы измерения данного прибора, или, как говорят, увеличить цену деления его шкалы.

Для того чтобы повысить цену деления вольтметра и таким образом приспособить его к измерению напряжений больших, чем то, на которое он рассчитан, надо последовательно с ним включать проводник, обладающий некоторым сопротивлением. Величину этого сопротивления легко рассчитать.

Пусть мы располагаем вольтметром на 10 В, а нам предстоит измерять напряжение до 100 В. Если мы наш вольтметр подключим к участку с напряжением 100 В, то обмотка этого прибора перегорит, так как через него пройдет ток в 10 раз больший, чем тот, на который он рассчитан. На приборе наибольшее напряжение может быть 10 В, остальные же 90 В должны приходиться на проводник с добавочным сопротивлением , которое нужно включить последовательно с вольтметром.

Так как при последовательном соединении напряжения на отдельных участках цепи пропорциональны сопротивлениям этих участков, то величину добавочного сопротивления найдем из пропорции:

где R � сопротивление вольтметра.

Таким образом, добавочное сопротивление должно быть в 9 раз больше сопротивления вольтметра.

Цена одного деления шкалы вольтметра с таким добавочным сопротивлением будет в 10 раз больше цены деления основной шкалы.

В настоящее время, главным образом для нужд лабораторий, изготавливают универсальные приборы, снабжаемые набором шунтов и дополнительных сопротивлений. Такие приборы используются как для измерения токов, так и для измерения напряжений в очень широких пределах. Например, можно измерять токи от 1 мА до сотен ампер. Так же широк диапазон измеряемых напряжений.

Измерение напряжения вольтметром

Для измерения переменного или постоянного напряжения в цепях переменного и постоянного тока используют прибор, называемый вольтметром. Поскольку напряжение присутствует между разными точками цепи или на полюсах источника напряжения, вольтметр подключается всегда параллельно исследуемому участку цепи или параллельно клеммам источника напряжения.

Можно, конечно, включить вольтметр и последовательно, в разрыв цепи, но тогда будет измерено напряжение источника, а не на участке цепи, так как цепь будет разомкнута, а сам вольтметр имеет при этом очень большое внутреннее сопротивление.

Вольтметр

Вольтметры выпускаются как в виде отдельных электроизмерительных приборов, так и в формате одной из функций мультиметров. Во входной цепи современного вольтметра обычно находится резистор номиналом порядка мегаома, последовательно подключенный к электронной измерительной схеме.

Мультиметр

Вольтметр, как отдельный измерительный прибор или как одна из функций мультиметра, имеет несколько диапазонов измерения напряжения. Выбор диапазона осуществляется при помощи переключателя, расположенного на лицевой панели прибора.

Обычно на мультиметре можно выбрать одно из следующих значений (максимальное значение для диапазона): 200мВ, 2000мВ (2В), 20В, 200В, 600В и т.д. Как правило у мультиметров есть возможность измерения постоянного и переменного напряжения. Вид напряжения также выбирается на шкале переключателя.

Для измерения тока и напряжения у мультиметров имеются два отдельных гнезда для подключения щупов: одно гнездо — для измерения напряжения, второе гнездо — для измерения тока. Третье — общий провод, который остается на своем месте независимо от того, что измеряется, ток или напряжение.

Измерение напряжения мультиметром

Подключите щупы к соответствующим гнездам мультиметра или вольтметра. Включите прибор и переведите его в режим измерения напряжения, выбрав вид напряжения и диапазон с помощью переключателя. Если диапазон неизвестен, то стоит начать с самого большого значения из доступных на шкале переключателя, потом можно будет уменьшить.

Схема подключения вольтметра для измерения падения напряжения на лампочке:

Схема подключения вольтметра

Присоедините щупы (соблюдая осторожность!) так, чтобы прибор оказался подключен к нужным точкам цепи, между которыми требуется измерить напряжение. Спустя пару секунд прибор отобразит на своем дисплее действующее значение измеренного напряжения.

Если диапазон 600В или более, то значение измеренного напряжения будет отображено в вольтах. Если диапазон например 2000мВ или 200мВ (порядок величин напряжений, но в принципе значения на шкале могут отличаться от этих), то на дисплее будут показания в милливольтах.

Если измеряется постоянное напряжение, то, в зависимости от его полярности и от правильности расположения щупов, на дисплее может отобразиться цифра со знаком минус перед ним.

Это значит, что красный и черный щупы стоит поменять местами, поскольку красный щуп предназначен для установки на положительный полюс, а черный — на отрицательный полюс по отношению к источнику постоянного напряжения, который установлен в исследуемой цепи.

Вольтметр (или мультиметр), не предназначенный для измерения высокочастотных напряжений или более высоких напряжений, чем максимальное на его шкале, легко выйдет из строя, если с помощью него попытаться измерить высокочастотное или более высокое напряжение. В документации к прибору всегда указан род тока и максимально допустимые параметры напряжения, которое можно им мерить.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Измерение тока и напряжения. Вольтметр и амперметр.

Приветствую всех, сегодня в рамках курса «Основы электроники» мы рассмотрим основные способы измерения силы тока, напряжения и других параметров электрических цепей. Естественно, без внимания не останутся и основные измерительные приборы, такие как вольтметр и амперметр.

Измерение тока. Амперметр.

И начнем с измерения тока. Прибор, используемый для этих целей, называется амперметр, и в цепь он включается последовательно. Рассмотрим небольшой пример:

Амперметр.

Как видите, здесь источник питания подключен напрямую к резистору, символизирующему полезную нагрузку. Кроме того, в цепи присутствует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи:

I = \frac = \frac = 0.12

Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи �� Важным параметром этого прибора является его внутреннее сопротивление r_А . Почему это так важно? Смотрите сами — при отсутствии амперметра ток определяется по закону Ома, как мы и рассчитывали чуть выше. Но при наличии амперметра в цепи ток изменится, поскольку изменится общее сопротивление, и мы получим следующее значение:

I = \frac

Если бы амперметр был абсолютно идеальным, и его сопротивление равнялось нулю, то он бы не оказал никакого влияния на работу электрической цепи, параметры которой необходимо измерить, но на практике все не совсем так, и сопротивление прибора не равно 0. Конечно, сопротивление амперметра достаточно мало (поскольку производители стремятся максимально его уменьшить), поэтому во многих примерах и задачах им пренебрегают, но не стоит забывать, что оно все-таки и есть и оно ненулевое. При разговоре об измерении силы тока невозможно не упомянуть о способе, который позволяет расширить пределы, в которых может работать амперметр. Этот метод заключается в том, что параллельно амперметру включается шунт (резистор), имеющий определенное сопротивление:

R = \frac

В этой формуле n — это коэффициент шунтирования — число, которое показывает во сколько раз будут увеличены пределы, в рамках которых амперметр может производить свои измерения. Возможно это все может показаться не совсем понятным и логичным, поэтому сейчас мы рассмотрим практический пример, который позволит во всем разобраться. Пусть максимальное значение, которое может измерить амперметр составляет 1 А. А схема, силу тока в которой нам нужно определить имеет следующий вид:

Отличие от предыдущей схемы заключается в том, что напряжение источника питания на этой схеме в 100 раз больше, соответственно, и ток в цепи станет больше и будет равен 12 А. Напряжение в 1200 В взято исключительно ради примера, сокровенного практического смысла в этом нет ) Итак, из-за ограничения на максимальное значение измеряемого тока напрямую использовать наш амперметр мы не сможем. Так вот для таких задач и нужно использовать дополнительный шунт:

Использование амперметра

В данной задаче нам необходимо измерить ток I . Мы предполагаем, что его значение превысит максимально допустимую величину для используемого амперметра, поэтому добавляем в схему еще один элемент, который будет выполнять роль шунта. Пусть мы хотим увеличить пределы измерения амперметра в 25 раз, это значит, что прибор будет показывать значение, которое в 25 раз меньше, чем величина измеряемого тока. Нам останется только умножить показания прибора на известное нам число и получим нужное значение. Для реализации задумки мы должны поставить шунт параллельно амперметру, причем сопротивление его должно быть равно значению, которое мы определяем по формуле:

R = \frac

В данном случае n = 25, но мы проведем все расчеты в общем виде, чтобы показать, что величины могут быть абсолютно любыми, принцип шунтирования будет работать одинаково. Итак, поскольку напряжения на шунте и на амперметре равны, мы можем записать первое уравнение:

I_А\medspace r_А = I_R\medspace R

Выразим ток шунта через ток амперметра:
I_R = I_А\medspace \frac
Измеряемый ток равен:

I = I_R + I_А

Подставим в это уравнение предыдущее выражение для тока шунта:
I = I_А + I_А\medspace \frac
Но сопротивление шунта нам также известно ( R = \frac ). В итоге мы получаем:

I = I_А\medspace (1 + \frac\enspace) = I_А\medspace n

Вот мы и получили то, что и хотели. Значение, которое покажет амперметр в данной цепи будет в n раз меньше, чем сила тока, величину которой нужно измерить. С измерениями тока в цепи все понятно, давайте перейдем к следующему вопросу, а именно определению напряжения.

Измерение напряжения. Вольтметр.

Прибор, предназначенный для измерения напряжения, называется вольтметр. И, в отличие от амперметра, в цепь он включается параллельно участку цепи, напряжение на котором необходимо определить. И, опять же, в противоположность идеальному амперметру, имеющему нулевое сопротивление, сопротивление идеального вольтметра должно быть равно бесконечности. Давай разберемся, с чем это связано:

Вольтметр

Если бы в цепи не было вольтметра, ток через резисторы был бы один и тот же и определялся по Закону Ома следующим образом:

I_1 = I_2 = \frac = \frac = 1

Итак, величина тока составила бы 1 А, а соответственно напряжение на резисторе 2 было бы равно 20 В. С этим все понятно, а теперь мы хотим измерить это напряжение вольтметром и включаем его параллельно с R_2 . Если бы сопротивление вольтметра было бы бесконечно большим, то через него просто не потек бы ток ( I_B = 0 ), и прибор не оказал бы никакого воздействия на исходную цепь. Но поскольку r_В имеет конечную величину и не равно бесконечности, то через вольтметр потечет ток. В связи с этим напряжение на резисторе R_2 уже не будет таким, каким бы оно было при отсутствии измерительного прибора. Вот поэтому идеальным был бы такой вольтметр, через который не проходил бы ток. Как и в случае с амперметром, есть специальный метод, который позволяет увеличить пределы измерения напряжения для вольтметра. Для осуществления этого необходимо включить последовательно с прибором добавочное сопротивление, величина которого определяется по формуле:

R_Д = r_В\medspace (n\medspace-\medspace 1)

Это приведет к тому, что показания вольтметра будут в n раз меньше, чем значение измеряемого напряжения. По традиции давайте рассмотрим небольшой практический пример:

Пример шунтирования вольтметра

Здесь мы добавили в цепь добавочное сопротивление R_3 . Перед нами стоит задача измерить напряжение на резисторе R_2:\medspace U_2 = R_2\medspace I_2 . Давайте определим, какой результат при таком включении выдаст нам вольтметр:

U_2 = I_2\medspace R_2 = U_В + I_В\medspace R_3

Подставим в эту формулу выражение для расчета сопротивления добавочного резистора:

U_2 = U_В + I_В\medspace (r_В\medspace (n\medspace-\medspace 1)) = U_В + I_В\medspace r_В\medspace n\medspace-\medspace I_В\medspace r_В = U_В + U_В\medspace n\medspace-\medspace U_В = U_В\medspace n

Таким образом: U_В = \frac . То есть показания вольтметра будут в n раз меньше, чем величина напряжения, которое мы измеряли. Так что, используя данный метод, возможно значительно увеличить пределы измерения вольтметра. В завершении статьи пару слов об измерении сопротивления и мощности. Для решения обеих задач возможно совместное использование амперметра и вольтметра. В предыдущих статьях (про мощность и сопротивление) мы подробно останавливались на понятиях сопротивления и мощности и их связи с напряжением и сопротивлением, таким образом, зная ток и напряжение электрической цепи можно произвести расчет нужного нам параметра. Ну а кроме того есть специальные приборы, которые позволяют произвести измерения сопротивления участка цепи (омметр) и мощности (ваттметр). В общем-то, на этом, пожалуй, на сегодня закончим, следите за обновлениями!

Как определить действительное напряжение в цепи, если.

Как определить действительное напряжение в цепи, если известны показания странного вами вольтметра и поправка?

Дополнен 11 лет назад

Не странного, а собранного 😀

Лучший ответ

Требуется найти напряжение, которое было бы в цепи без вольтметра? Для этого требуется знать внутреннее сопротивление вольтметра. Учитывая, что Вы собрали его, то оно известно (обычно очень большое в идеале бесконечность) . + вольтметр подключается параллельно к исследуемой цепи.

Короче: вольтметр шунтирует цепь. Как итог — через исследуемою цепь течёт меньший ток — на ней падает меньшее напряжение. Схема упрощается до двух резисторов включённых в параллель, а как с ними бороться написано в учебнике по физики за восьмой класс ))

Подели сопротивление цепи на внутреннее сопротивление вольтметра (В) , +1, и умножь на показание В и получишь ответ, наверное))

Остальные ответы

Если я правильно понял -то поправка это разность между показаниями
эталонного вольтметра с собранным то надо просто прибавить эту поправку к показаниям
А вообще откалибровать собранный вольтметр по эталонному и все

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *