От чего зависит эдс машины постоянного тока
Перейти к содержимому

От чего зависит эдс машины постоянного тока

  • автор:

9.Эдс обмотки якоря в машине постоянного тока.

При выводе формулы ЭДС будем исходить из прямоугольного расположения индукции в зазоре, при этом магнитная индукция на участке расчетной полюсной дуги biiτ равна Bδ, а за ее пределами равна 0 и в проводниках, расположенных за пределами bi, ЭДС не наводится. Это эквивалентно уменьшению общего числа пазовых проводников в обмотке якоря до значения NiiN.

При вращении якоря машины в направлении по часовой стрелке в проводниках обмотки якоря индуктируется ЭДС, направление которой может быть определено по правилу правой руки. Значение индуктируемой в проводнике ЭДС , где В — магнитная индукция; / — активная длина проводника; v линейная скорость перемещения проводника. Полная ЭДС якоря рассматриваемой машины равна . ЭДС Eg является переменной, так как проводники обмотки якоря проходят попеременно под северным и южным полюсами, в результате чего направление ЭДС в проводниках меняется. Если обмотка якоря с помощью щеток замкнута через внешнюю цепь, то в обмотке возникает переменный ток, а во внешней цепи — постоянный. Это объясняется тем, что под верхней щеткой всегда находится пластина, соединенная с проводником, расположенным под северным полюсом, а под нижней щеткой — пластина, соединенная с проводником, расположенным под южным полюсом. В результате этого полярность щеток и направление тока во внешней цепи остаются неизменными. Таким образом, в генераторе коллектор является механическим выпрямителем, который преобразовывает переменный ток обмотки якоря в постоянный ток внешней цепи.

Значение ЭДС обмотки якоря зависит от ширины секции. Наибольшее значение ЭДС соответствует полному шагу, т.к. в этом случае с каждой секцией сцепляется весь основной магнитный поток.

Значение ЭДС обмотки якоря равно

где N — число эффективных проводников обмотки якоря; 2а — число параллельных ветвей, -Среднее значение ЭДС, индуктируемой в одном проводнике обмотки якоря.

Подставив в выражение дляEа, получим

или где

10.Двигатель постоянного тока последовательного возбуждения.

В данном двигателе обмотка возбуждения включена последовательно с обмоткой якоря, поэтому магнитный поток Ф в нем зависит от тока нагрузки. При небольших нагрузках магнитная системам машины не насыщена и зависимость магнитного потока от тока нагрузки прямо пропорциональна, т.е.. В этом случае электромагнитный момент двигателя равен , частота вращения. Таким образом, вращающий момент двигателя при насыщенном состоянии магнитной системы пропорционален квадрату тока якоря, а частота вращения обратно пропорциональна этому току. Это изображено на рабочих характеристиках.

Рабочие характеристики. У двигателей параллельного возбуждения увеличение мощности на валу Р2 сопровождается примерно линейным увеличением Ia и незначительным уменьшением потока полюсов ,что отражается на закономерностях измененияи. Изменения М иn при возрастании Р2 оказываются более значительными. Электромагнитный М момент увеличивается с ростом Р2 примерно по закону параболы, а n- уменьшается примерно по закону гиперболы. Характер изменения свидетельствует о том, что у двигателей последовательного возбуждения не могут быть реализованы режимы холостого хода и очень малых нагрузок из-за чрезмерного возрастания частоты вращения. Это является особенностью рабочих характеристик двигателей этого типа, которую необходимо учитывать при эксплуатации.

Механические и скоростные характеристики. При наличии в цепи якоря регулировочного сопротивления Rра скоростные и механические характеристики примут вид: и,соответственно.

Из графика видно, что при малых Ia частота вращения двигателя становится недостаточно большой. Поэтому работа двигателей последовательного возбуждения на холостом ходу не допускается. Минимально допустимая нагрузка составляет Р2=(0,2-0,25)Рн. Пунктиром на графике показана характеристика для ненасыщенной магнитной системы.

Следует отметить, что двигатели последовательного возбуждения развивают значительно больший пусковой момент, чем двигатели параллельного возбуждения при тех же допустимых значениях пускового тока. Кроме того, у двигателей параллельного возбуждения , а у двигателей последовательного возбуждения. Поэтому у двигателей параллельного возбуждения, а у двигателей последовательного возбуждения. Таким образом у двигателей последовательного возбуждения при изменении момента нагрузки в широких пределах мощность изменяется в меньших пределах, чем у двигателей параллельного возбуждения. Поэтому для двигателей последовательного возбуждения менее опасны перегрузки по моменту. В связи с этим двигатели последовательного возбуждения имеют существенные преимущества в случае тяжелых условий пуска и изменения момента нагрузки в широких пределах. Они широко применяются для электрической тяги и в подъемно-транспортных установках.

11. Электрические машины постоянного тока

11.1. Устройство электрической машины постоянного тока

Электрическая машина постоянного тока состоит из двух основных частей: неподвижной части ( индуктора ) и вращающейся части ( якоря с барабанной обмоткой).
На рис. 11.1 изображена конструктивная схема машины постоянного тока

Индуктор состоит из станины 1 цилиндрической формы, изготовленной из ферромагнитного материала, и полюсов с обмоткой возбуждения 2, закрепленных на станине. Обмотка возбуждения создает основной магнитный поток.
Магнитный поток может создаваться постоянными магнитами, укрепленными на станине.
Якорь состоит из следующих элементов: сердечника 3, обмотки 4, уложенной в пазы сердечника, коллектора 5.
Рис. 11.1
Сердечник якоря для уменьшения потерь на вихревые точки набирается из изолированных друг от друга листов электротехнической стали.

11.2. Принцип действия машины постоянного тока

Рассмотрим работу машины постоянного тока на модели рис.11.2,

где 1 — полюсы индуктора, 2 — якорь, 3 — проводники, 4 — контактные щетки.
Проводники якорной обмотки расположены на поверхности якоря. Очистим внешние поверхности проводников от изоляции и наложим на проводники неподвижные контактные щетки.
Контактные щетки размещены на линии геометрической нейтрали, проведенной посредине между полюсами.
Приведем якорь машины во вращение в направлении, указанном стрелкой.
Рис. 11.2
Определим направление ЭДС, индуктированных в проводниках якорной обмотки по правилу правой руки.

На рис.11.2 крестиком обозначены ЭДС, направленные от нас, точками — ЭДС, направленные к нам. Соединим проводники между собой так, чтобы ЭДС в них складывались. Для этого соединяют последовательно конец проводника, расположенного в зоне одного полюса с концом проводника, расположенного в зоне полюса противоположной полярности (рис. 11.3)

Два проводника, соединенные последовательно, образуют один виток или одну катушку. ЭДС проводников, расположенных в зоне одного полюса, различны по величине. Наибольшая ЭДС индуктируется в проводнике, расположенном под срединой полюса, ЭДС, равная нулю, — в проводнике, расположенном на линии геометрической нейтрали.
Рис. 11.3
Если соединить все проводники обмотки по определенному правилу последовательно, то результирующая ЭДС якорной обмотки равна нулю, ток в обмотке отсутствует. Контактные щетки делят якорную обмотку на две параллельные ветви. В верхней параллельной ветви индуктируется ЭДС одного направления, в нижней параллельной ветви — противоположного направления. ЭДС, снимаемая контактными щетками, равна сумме электродвижущих сил проводников, расположенных между щетками.
На рис. 11.4 представлена схема замещения якорной обмотки.

В параллельных ветвях действуют одинаковые ЭДС, направленные встречно друг другу. При подключении к якорной обмотке сопротивления в параллельных ветвях возникают одинаковые токи , через сопротивление RH протекает ток IЯ.
Рис. 11.4
ЭДС якорной обмотки пропорциональна частоте вращения якоря n2 и магнитному потоку индуктора Ф

где Се — константа.
В реальных электрических машинах постоянного тока используется специальное контактное устройство — коллектор. Коллектор устанавливается на одном валу с сердечником якоря и состоит из отдельных изолированных друг от друга и от вала якоря медных пластин. Каждая из пластин соединена с одним или несколькими проводниками якорной обмотки. На коллектор накладываются неподвижные контактные щетки. С помощью контактных щеток вращающаяся якорная обмотка соединяется с сетью постоянного тока или с нагрузкой.

11.3. Работа электрической машины постоянного тока
в режиме генератора

Любая электрическая машина обладает свойством обратимости, т.е. может работать в режиме генератора или двигателя. Если к зажимам приведенного во вращение якоря генератора присоединить сопротивление нагрузки, то под действием ЭДС якорной обмотки в цепи возникает ток

где U — напряжение на зажимах генератора;
Rя — сопротивление обмотки якоря.

Уравнение (11.2) называется основным уравнением генератора. С появлением тока в проводниках обмотки возникнут электромагнитные силы.
На рис. 11.5 схематично изображен генератор постоянного тока, показаны направления токов в проводниках якорной обмотки.

Воспользовавшись правилом левой руки, видим, что электромагнитные силы создают электромагнитный момент Мэм, препятствующий вращению якоря генератора.
Чтобы машина работала в качестве генератора, необходимо первичным двигателем вращать ее якорь, преодолевая тормозной электромагнитный момент.

11 .4. Генераторы с независимым возбуждением.
Характеристики генераторов

Магнитное поле генератора с независимым возбуждением создается током, подаваемым от постороннего источника энергии в обмотку возбуждения полюсов.
Схема генератора с независимым возбуждением показана на рис. 11.6.
Магнитное поле генераторов с независимым возбуждением может создаваться
от постоянных магнитов (рис. 11.7).

Рис. 11.6 Рис. 11.7

Зависимость ЭДС генератора от тока возбуждения называется характеристикой холостого хода E = Uхх = f (Iв).
Характеристику холостого хода получают при разомкнутой внешней цепи (Iя) и при постоянной частоте вращения (n2 = const)
Характеристика холостого хода генератора показана на рис. 11.8.
Из-за остаточного магнитного потока ЭДС генератора не равна нулю при токе возбуждения, равном нулю.
При увеличении тока возбуждения ЭДС генератора сначала возрастает пропорционально.
Соответствующая часть характеристики холостого хода будет прямолинейна. Но при дальнейшем увеличении тока возбуждения происходит магнитное насыщение машины, отчего кривая будет иметь изгиб. При последующем возрастании тока возбуждения ЭДС генератора почти не меняется. Если уменьшать ток возбуждения, кривая размагничивания не совпадает с кривой намагничивания из-за явления гистерезиса.
Зависимость напряжения на внешних зажимах машины от величины тока нагрузки
U = f (I) при токе возбуждения Iв = const называют внешней характеристикой генератора.

Внешняя характеристика генератора изображена на рис. 11.9.

Рис. 11.8 Рис. 11.9

С ростом тока нагрузки напряжение на зажимах генератора уменьшается из-за увеличения падения напряжения в якорной обмотке.

11.5. Генераторы с самовозбуждением.
Принцип самовозбуждения генератора
с параллельным возбуждением

Недостатком генератора с независимым возбуждением является необходимость иметь отдельный источник питания. Но при определенных условиях обмотку возбуждения можно питать током якоря генератора.
Самовозбуждающиеся генераторы имеют одну из трех схем: с параллельным, последовательным и смешанным возбуждением. На рис. 11.10 изображен генератор с параллельным возбуждением.

Обмотка возбуждения подключена параллельно якорной обмотке. В цепь возбуждения включен реостат Rв. Генератор работает в режиме холостого хода.
Чтобы генератор самовозбудился, необходимо выполнение определенных условий.
Первым из этих условий является наличие остаточного магнитного потока между полюсами. При вращении якоря остаточный магнитный поток индуцирует в якорной обмотке небольшую остаточную ЭДС.
Рис. 11.10
Вторым условием является согласное включение обмотки возбуждения. Обмотки возбуждения и якоря должны быть соединены таким образом, чтобы ЭДС якоря создавала ток, усиливающий остаточный магнитный поток. Усиление магнитного потока приведет к увеличению ЭДС. Машина самовозбуждается и начинает устойчиво работать с каким-то током возбуждения Iв = const и ЭДС Е = const, зависящими от сопротивления Rв в цепи возбуждения.
Третьим условием является то, что сопротивление цепи возбуждения при данной частоте вращения должно быть меньше критического. Изобразим на рис. 11.11 характеристику холостого хода генератора E = f (Iв) (кривая 1) и вольт — амперную характеристику сопротивления цепи возбуждения Uв = Rв·Iв, где Uв — падение напряжения в цепи возбуждения. Эта характеристика представляет собой прямую линию 2, наклоненную к оси абсцисс под углом γ (tg γ ~ Rв).

Ток обмотки возбуждения увеличивает магнитный поток полюсов при согласном включении обмотки возбуждения. ЭДС, индуцированная в якоре, возрастает, что приводит к дальнейшему увеличению тока обмотки возбуждения, магнитного потока и ЭДС. Рост ЭДС от тока возбуждения замедляется при насыщении магнитной цепи машины.
Рис. 11.11

Падение напряжения в цепи возбуждения пропорционально росту тока. В точке пересечения характеристики холостого хода машины 1 с прямой 2 процесс самовозбуждения заканчивается. Машина работает в устойчивом режиме.
Если увеличим сопротивление цепи обмотки возбуждения, угол наклона прямой 2 к оси тока возрастает. Точка пересечения прямой с характеристикой холостого хода смещается к началу координат. При некотором значении сопротивления цепи возбуждения Rкр, когда
γ = γкр, самовозбуждение становится невозможным. При критическом сопротивлении вольт — амперная характеристика цепи возбуждения становится касательной к прямолинейной части характеристики холостого хода, а в якоре появляется небольшая ЭДС.

11.6. Работа электрической машины постоянного тока
в режиме двигателя. Основные уравнения

Под действием напряжения, подведенного к якорю двигателя, в обмотке якоря появится ток Iя. При взаимодействии тока с магнитным полем индуктора возникает электромагнитный вращающий момент

где CM — коэффициент, зависящий от конструкции двигателя.
На рис. 11.12 изображен схематично двигатель постоянного тока, выделен проводник якорной обмотки.

Ток в проводнике направлен от нас. Направление электромагнитного вращающего момента определится по правилу левой руки. Якорь вращается против часовой стрелки. В проводниках якорной обмотки индуцируется ЭДС, направление которой определяется правилом правой руки. Эта ЭДС направлена встречно току якоря, ее называют противо-ЭДС.
Рис. 11.12

В установившемся режиме электромагнитный вращающий момент Мэм уравновешивается противодействующим тормозным моментом М2 механизма, приводимого во вращение.

На рис. 11.13 показана схема замещения якорной обмотки двигателя. ЭДС направлена встречно току якоря. В соответствии со вторым законом Кирхгофа , откуда

Рис.11.13 Уравнение (11.3) называется основным уравнением двигателя.

Из уравнения (11.3) можно получить формулы:

Магнитный поток Ф зависит от тока возбуждения Iв, создаваемого в обмотке возбуждения. Из формулы (11.5) видно, что частоту вращения двигателя постоянного тока n2 можно регулировать следующими способами:

  1. изменением тока возбуждения с помощью реостата в цепи обмотки возбуждения;
  2. изменением тока возбуждения с помощью реостата в цепи обмотки возбуждения;
  3. изменением напряжения U на зажимах якорной обмотки.

Чтобы изменить направление вращения двигателя на обратное (реверсировать двигатель), необходимо изменить направление тока в обмотке якоря или индуктора.

11.7. Механические характеристики электродвигателей
постоянного тока

Рассмотрим двигатель с параллельным возбуждением в установившемся режиме работы (рис. 11.14). Обмотка возбуждения подключена параллельно якорной обмотке.

Механической характеристикой двигателя называется зависимость частоты вращения якоря n2 от момента на валу M2 при U = const и Iв = const.
Уравнение (11.6) является уравнением механической характеристики двигателя с параллельным возбуждением.
Рис. 11.14

Эта характеристика является жесткой. С увеличением нагрузки частота вращения
такого двигателя уменьшается в небольшой степени (рис. 11.15).

На рисунке 11.16 изображен двигатель последовательного возбуждения. Якорная обмотка и обмотка возбуждения включены последовательно.

Ток возбуждения двигателя одновременно является током якоря. Магнитный поток индуктора пропорционален току якоря.

где k — коэффициент пропорциональности.
Момент на валу двигателя пропорционален квадрату тока якоря.

Механическая характеристика двигателя последовательного возбуждения является мягкой (рис. 11.17).

С увеличением нагрузки скорость двигателя резко падает.
С уменьшением нагрузки на валу двигатель развивает очень большую частоту вращения. Говорят, что двигатель идет вразнос. Работа двигателя последовательного возбуждения без нагрузки недопустима.
Двигатель смешанного возбуждения имеет механическую характеристику, представляющую собой нечто среднее между механическими характеристиками двигателя параллельного и последовательного возбуждения.
Двигатели с параллельным возбуждением применяются для привода станков и различных механизмов, требующих широкой регулировки скорости.
Двигатели с последовательным возбуждением применяются в качестве тяговых двигателей электровозов, трамваев и т.д.

От чего зависит ЭДС обмотки якоря в машинах постоянного тока

Обмотка якоря является замкнутой системой проводников, уложенных в пазах.

Элементом якорной обмотки является секция, которая может быть одно — или много витковой. Секция состоит из активных сторон и лобовых частей. При вращении якоря, в каждой из активных сторон индуцируется ЭДС, величина которой равна:

т.е. она зависит от магнитной индукции полюсов , длины проводника и скорости его движения V. В реальной машине, будь она генератором или двигателем, в наведении ЭДС участвуют все проводники обмотки якоря.

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

От чего зависит эдс машины постоянного тока

Обмотки якорей и эдс машины постоянного тока

Обмотки якорей машины постоянного тока изготовляют из изолированных медных проводов, а в машинах больших мощностей — из шин прямоугольного поперечного сечения; обмотки выполняются замкнутыми.

При изготовлении обмотки из шин прямоугольного поперечного сечения (стержней) каждая секция может состоять из двух активных проводов (одновитковая секция). Из изолированного медного провода секции обмоток изготовляют в виде катушек с определенным числом витков (многовитковые секции).

В машинах постоянного тока наиболее широкое применение находят двухслойные обмотки, у которых в пазах якоря активные части секций размещаются в два слоя.
Каждая секция обмотки состоит из двух активных сторон, отстоящих друг от друга на расстоянии, близком к полюсному делению , т. е. расстоянию между осями соседних разноизменных полюсов.
При таком расстоянии между активными проводниками (шаге обмотки) эдс, индуктированные в этих проводниках, будут направлены в одну сторону и эдс секции будет иметь наибольшее значение, так как эдс ее активных сторон складываются (изо).

Одна активная часть секции находится в верхнем слое паза, другая — в нижнем.
При изображении развернутых схем обмоток активные стороны, лежащие в верхнем слое паза, изображаются сплошной линией, а стороны нижнего слоя — прерывистой. Концы секции соединяются как с другими секциями обмотки, так и с коллекторными пластинами.

Секции, образующие обмотки, соединяются между собой так, чтобы индуктированные в них эдс были направлены согласно, т. е. в одну сторону. Для этого начальные (конечные) проводники последовательно соединенных секций должны находиться в любой момент под полюсами одинаковой полярности.

В зависимости от порядка соединения секций друг с другом обмотки могут быть параллельными (петлевыми) и последовательными (волновыми).

Секция простой параллельной обмотки:
а — одновитковой, б — мпоговитковой

На изо показана (толстой синей линией) одновитковая ( а ) и многовитковая ( б ) секции параллельной обмотки, состоящие из активной части верхнего слоя паза 1 и нижнего слоя паза 1 + y1 .
В этих обмотках последовательно соединяются между собой секции начальные (конечные), активные стороны которых находятся под одним полюсом в расположенных рядом пазах.

Таким образом, концы секции параллельной обмотки присоединяются к двум соседним коллекторным пластинам ( 1′ и 2′ ) , причем в многовитковых секциях к пластине 1′ подключается начало первого витка, а к пластине 2′ — конец последнего витка, соединяемый с началом следующей секции.

Любая коллекторная пластина (например, 1′ ) соединяется с двумя активными проводами, в каждом из которых проходит ток одной параллельной ветви обмотки так что между .двумя щетками различной полярности обмотка образует две параллельные ветви.

При параллельных обмотках число щеток должно быть,всегда равно числу полюсов 2p и, следовательно, число параллельных ветвей в этих обмотках равно числу полюсов,
т. е. 2а = 2р (а = р) .
При большом числе полюсов параллельная обмотка образует много параллельных ветвей, что дает возможность понизить ток в одной ветви и уменьшает поперечное сечение провода обмотки.
В последовательных обмотках начальные (конечные) активные провода секций находятся под различными полюсами одинаковой полярности (следующее изо).

Активные стороны первой секции находятся под полюсами N1 и S1 .
Активные стороны второй секции, последовательно соединенной с первой, находятся под полюсами N2 и S2 , третьей секции — под полюсами N3 и S3 и т. д.

После включения всех секций по окружности якоря соединяется верхний проводник
пары n — 1 , лежащей рядом (обычно слева) с проводником пары n , от которого начали обход обмотки.
Последовательно с верхним проводником пары n — 1 включаем проводники, лежащие под полюсами S1, N2, S2 и т. д., по окружности якоря, и заканчиваем проводником, лежащим рядом с проводником n — 1 .
Затем вновь соединяем пары проводников, находящиеся под различными полюсами по окружности якоря и т. д., пока все проводники не окажутся включенными в замкнутую цепь.

Развернутая схема двух секций простой последовательной обмотки:
а — одновитковой, б — многовитковой

Вне зависимости от числа полюсов простая последовательная обмотка образует две параллельные ветви, т. е. 2а = 2 . Поэтому при любом числе полюсов машина может иметь только две щетки, если обмотка якоря последовательная, причем эти щетки должны помещаться на расстоянии 1/2р части окружности коллектора.
Например, при р = 2 расстояние между щетками должно быть равно четверти окружности коллектора. Это дает возможность делать доступной для осмотра не всю окружность коллектора, а только ее часть.
Наличие только двух параллельных ветвей свидетельствует о том, что в каждой ветви последовательно соединяется большое число активных проводов и эдс машины может иметь большое значение.
Поэтому последовательные обмотки находят применение для машин высокого напряжения.

В проводнике, перемещающемся в магнитном поле в направлении, перпендикулярном направлению магнитных линий этого поля создаётся эдс, равная е = Blv ,
где В — среднее значение магнитной индукции,Т;
l — длина проводника, м;
v
— скорость перемещения проводника, м/с.

На якоре машины укладывается большое число активных ликов, которое обозначим буквой N . В каждой параллельной ветви обмотки будет последовательно включено N/2a активных проводника.
Таким образом, эдс машины E = N/2ae = N/2aBlv .
Скорость перемещения проводников в магнитном поле v = 2р(n/60) ,
где — число полюсов машины; — полюсное деление; т.е., расстояние между осями разноименных полюсов; n — частота вращения якоря машины в минуту.

Имея в виду, что произведение среднего значения магнитной индукции В на осевую длину полюса l и на полюсное деление представляет собой магнитный поток одного полюса
Ф = Вlт , получим для эдс машины следующее выражение:
E = ((pN)/(60a))nФ
.

Для каждой машины величины р, N и а постоянны, так что отношение (pN)/(60a) представляет собой величину, постоянную для данной машины.
Следовательно, эдс машины постоянного тока определяется следующим выражением:
Е = СnФ , т.е. эдс машины постоянного тока равна произведению постоянной конструктивной величины С на частоту вращения якоря в минуту n и магнитный поток полюсов Ф .
Это выражение показывает, что для изменения эдс (или напряжения) машины необходимо изменить либо частоту вращения якоря, либо магнитный поток полюсов.

Так как изменение частоты вращения двигателя, приводящего в движение генератор, связано со значительными сложностями, то на практике регулировку эдс и напряжения производят изменением магнитного потока, который зависит от тока в обмотке возбуждения. В цепь обмотки возбуждения включают реостат для изменения тока возбуждения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *