Почему возникает сопротивление в проводнике
Перейти к содержимому

Почему возникает сопротивление в проводнике

  • автор:

Электрическое сопротивление проводника

Электрическое сопротивление проводника возникает при протекании по проводнику электрического тока. Т.е., когда при движении по проводнику электронов, происходит столкновение этих электронов с атомами проводника. При таком столкновении движущийся электрон выбивает из атома один из его свободных электронов и становится на его место, а часть энергии, полученной электроном от источника Э.Д.С., превращается в тепло, которое нагревает проводник. Выбитый электрон обладает уже меньшей энергией и с меньшей силой ударяет в следующий атом. Подобные столкновения испытывают многие, движущиеся по проводнику электроны, вследствие чего скорость их движения уменьшается и через поперечное сечение проводника будет протекать меньшее количество электронов (сила тока в цепи уменьшается). Можно сказать, что проводник оказывает противодействие протекающему по нему электрическому току. Такое свойство проводника и носит название электрического сопротивления проводника.

Чем длиннее проводник, меньше его поперечное сечение и больше его удельное сопротивление, тем больше сопротивление данного проводника.

R = Lρп / Sп

где:
R — сопротивление проводника;
L — длина проводника;
ρп — удельное сопротивление материала проводника, т.е. сопротивление 1 см 3 ;
Sп — площадь поперечного сечения проводника.

Для измерения величины сопротивления введена единица измерения, которая носит название ом. Сопротивлением в 1 ом обладает ртутный столбик высотой в 106 см и поперечным сечением 1 мм 2 при температуре 20° С (международный эталон).

Следует подчеркнуть, что под термином «сопротивление» понимают определённое свойство материала, провода или прибора. В этом смысле, например, говорят: лампа накаливания обладает сопротивлением 150 ом или провод имеет сопротивление 7 ом. Если же говорят об устройстве, предназначенном для включения в электрическую цепь с целью регулирования, уменьшения или ограничения тока цепи, то иногда под термином «сопротивление» подразумевают резистор.

Проводимость материалов

Иногда электропроводящие свойства проводника характеризуют не сопротивлением, а величиной, ему обратной. Эта величина носит название проводимости материалов

От чего зависит сопротивление

Сила тока в проводнике прямо пропорциональна напряжению на нем. Это значит, что с увеличением напряжения увеличивается и сила тока. Однако при одинаковом напряжении, но использовании разных проводников сила тока различна. Можно сказать по-другому. Если увеличивать напряжение, то хотя сила тока и будет увеличиваться, но везде по-разному, в зависимости от свойств проводника.

Зависимость силы тока от напряжения для данного конкретного проводника представляет собой сопротивление этого проводника. Оно обозначается R и находится по формуле R = U/I. То есть сопротивление определяется как отношение напряжения к силе тока. Чем больше сила тока в проводнике при данном напряжении, тем меньше его сопротивление. Чем больше напряжение при данной силе тока, тем больше сопротивление проводника.

Формулу можно переписать по отношению к силе тока: I = U/R (закон Ома). В таком случае нагляднее, что чем больше сопротивление, тем меньше сила тока.

Можно сказать, что сопротивление как бы мешает напряжению создавать большую силу тока.

Само сопротивление является характеристикой проводника. Оно не зависит от поданного на него напряжения. Если будет подано большое напряжение, то изменится сила тока, но не изменится отношение U/I, т. е. не изменится сопротивление.

От чего же зависит сопротивление проводника? Оно зависти от

  • длины проводника,
  • площади его поперечного сечения,
  • вещества, из которого изготовлен проводник,
  • температуры.

Чтобы связать вещество и его сопротивление, вводится такое понятие как удельное сопротивление вещества. Оно показывает, какое будет сопротивление в данном веществе, если проводник из него будет иметь длину 1 м и площадь поперечного сечения 1 м 2 . Проводники такой длины и толщины, изготовленные из разных веществ, будут иметь разные сопротивления. Это связано с тем, что у каждого металла (чаще всего именно они являются проводниками) своя кристаллическая решетка, свое количество свободных электронов.

Чем меньше удельное сопротивление вещества, тем лучшим проводником электрического тока оно является. Маленьким удельным сопротивлением обладают, например, серебро, медь, алюминий; куда большее у железа, вольфрама; очень большое у различных сплавов.

Чем длиннее проводник, тем большее сопротивление он имеет. Это становится понятно, если принять во внимание, что движению электронов в металлах мешают ионы, составляющие кристаллическую решетку. Чем их больше, т. е. чем длиннее проводник, тем больше у электрона шанс замедлить свой путь.

Однако увеличение площади поперечного сечения делает как бы дорогу шире. Электронам легче течь и не сталкиваться с узлами кристаллической решетки. Поэтому чем толще проводник, тем его сопротивление меньше.

Таким образом, сопротивление прямо пропорционально зависит от удельного сопротивления (ρ) и длины (l) проводника и обратно пропорционально зависит от площади (S) его поперечного сечения. Получаем формулу сопротивления:

В этой формуле на первый взгляд не отражается зависимость сопротивления проводника от его температуры. Однако удельное сопротивление вещества меряется при определенной температуре (обычно 20 °C). Поэтому температура учитывается. Для вычислений удельные сопротивления берут из специальных таблиц.

Для металлических проводников чем больше температура, тем сопротивление больше. Это связано с тем, что при повышении температуры ионы решетки начинают сильнее колебаться и больше мешать движению электронов. Однако в электролитах (растворах, где заряд несут ионы, а не электроны) с повышением температуры сопротивление уменьшается. Здесь это связано с тем, что чем выше температура, тем больше происходит диссоциация на ионы, и они быстрее двигаются в растворе.

Электрическое сопротивление проводников

Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.

Электронная теория так объясняет сущность электрического сопротивления металлических проводников. Свободные электроны при движении по проводнику бесчисленное количество раз встречают на своем пути атомы и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии.

Электрическое сопротивление — физическая величина, характеризующая способность проводника препятствовать прохождению электрического тока

Движущиеся электроны (от положительного полюса источника к отрицательному) ударяются о колеблющиеся ионы кристаллической решетки в проводнике и замедляют их движение

Электроны испытывают как бы сопротивление своему движению. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.

Точно тем же объясняется сопротивление жидких проводников и газов прохождению электрического тока. Однако не следует забывать, что в этих веществах не электроны, а заряженные частицы молекул встречают сопротивление при своем движении.

Аналоговый мультиметр

Омметр — прибор для измерения электрического сопротивления

Сопротивление обозначается латинскими буквами R или r .

За единицу электрического сопротивления принят ом в честь Георга Симона Ома (1784–1854), немецкого физика, изучавшего взаимосвязь между напряжением, током и сопротивлением.

Ом есть сопротивление столба ртути высотой 106,3 см с поперечным сечением 1 мм 2 при температуре 0° С.

Если, например, электрическое сопротивление проводника составляет 4 ом, то записывается это так: R = 4 ом или r = 4 ом.

Для измерения сопротивлений большой величины принята единица, называемая мегомом.

Один мегом равен одному миллиону ом.

Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник.

Следовательно, для характеристики проводника (с точки зрения прохождения через него электрического тока) можно рассматривать не только его сопротивление, но и величину, обратную сопротивлению.

Обратной величиной электрического сопротивления является физическая величина, называемая электропроводностью.

Медные токоведущие шины в распределительном устройстве

Медные токоведущие шины в распределительном устройстве

Электрической проводимостью (электропроводностью) называется способность материала пропускать через себя электрический ток.

Так как проводимость есть величина, обратная сопротивлению, то и выражается она как 1/ R , обозначается проводимость латинской буквой g.

Единицей электрической проводимости является сименс. Она была так названа в честь немецкого ученого Вернера Сименса (1816 — 1892).

Слово сопротивление также относится к пассивному электрическому компоненту, правильное название которого — резистор, характеризующийся одним свойством — электрическим сопротивлением.

Причина включения резистора в электрическую цепь обычно состоит в том, чтобы уменьшить величину электрического тока или получить определенное падение напряжения. Резистор часто неправильно называют сопротивлением и это может привести к двусмысленности . Величину сопротивления резисторов обозначают либо написанием числа на резисторе, либо, что чаще, цветными полосками.

Резисторы для электронных схем

Резисторы для электронных схем

Влияние материала проводника, его размеров и окружающей температуры на величину электрического сопротивления.

Величина электрического сопротивления определяется материалом, формой и температурой проводника. Величина сопротивления зависит от длины проводника (прямопропорционально), от содержания в поперечном сечении проводника (обратно пропорционально), от материала проводника (удельное электрическое сопротивление) и от температуры.

Так как сопротивление различных проводников зависит от материала, из которого они изготовлены, то для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.

Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм 2 . Удельное сопротивление обозначается буквой греческого алфавита р. Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.

Например, удельное сопротивление меди равно 0,017, т. е. медный проводник длиной 1 м и сечением 1 мм 2 обладает сопротивлением 0,017 ом. Удельное сопротивление алюминия равно 0,03, удельное сопротивление железа — 0,12, удельное сопротивление константана — 0,48, удельное сопротивление нихрома — 1-1,1.

Вещества, обладающие высоким удельным сопротивлением, являются изоляторами. Наиболее совершенным изолятором является янтарь, а также в качестве изоляторов применяют ПВХ, слюду, стекло, фарфор и т. д.

удельное сопротивление

удельная проводимость

Хорошие проводники, такие как серебро, медь и алюминий, имеют самое низкое удельное сопротивление

Электрический провод с медной жилой

Электрический провод с медной жилой

Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.

Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой, т. е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.

Электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь поперечного сечения проводника :

где — R — сопротивление проводника, ом, l — длина в проводника в м, S — площадь поперечного сечения проводника, мм 2 .

Площадь поперечного сечения круглого проводника вычисляется по формуле:

S = ( Пи х d 2 )/ 4

где Пи — постоянная величина, равная 3,14; d — диаметр проводника.

А так определяется длина проводника:

Эта формула дает возможность определить длину проводника, его сечение и удельное сопротивление, если известны остальные величины, входящие в формулу.

Если же необходимо определить площадь поперечного сечения проводника, то формулу приводят к следующему виду:

Преобразуя ту же формулу и решив равенство относительно р, найдем удельное сопротивление проводника:

Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Для этого надо определить удельное сопротивление проводника и, пользуясь таблицей, найти материал, обладающий таким удельным сопротивлением.

Поперечный разрез силового кабеля на 400 кВ

Поперечный разрез силового кабеля на 400 кВ с изоляцией из сшитого полиэтилена и медной жилой. Сечение кабеля — 1600 мм 2 . Такой кабель используется в воздушно-кабельной линии электропередачи 380 кВ в Берлине. Линия протяженностью 34 км построена в 2000-м году.

Это нужно запомнить:

1. Если к одному и тому же источнику электрического напряжения последовательно подключить проводники из разных материалов, но одинаковой длины и одинакового сечения, то мы будем измерять амперметром, что по каждому проводнику протекает электрический ток разной величины. Каждый материал оказывает различное сопротивление прохождению тока.

2. Если мы используем для измерения проводники из одного и того же материала, которые будут иметь одинаковый диаметр, но всегда разную длину, то амперметр будет определять разный проходящий ток для каждой длины проводника. Наибольший ток будет течь по самому короткому проводу.

3. Если мы используем для измерения проводники из одного материала одинаковой длины, но разного сечения, то мы будем измерять разные значения тока для каждого проводника с разным сечением. Наибольший ток будет течь по проводу с наибольшим сечением.

Медные клеммные колодки для соединения жил проводов и кабелей в электрощитах

Медные клеммные колодки для соединения жил проводов и кабелей в электрощитах

Еще одной причиной, влияющей на сопротивление проводников, является температура .

Сопротивление проводников и полупроводников зависит от температуры. Сопротивление проводников увеличивается с повышением температуры (положительный температурный коэффициент электрического сопротивления), а сопротивление полупроводников, углерода и некоторых специальных сплавов металлов с повышением температуры уменьшается (отрицательный температурный коэффициент электрического сопротивления). Электрическое сопротивление всегда имеет положительное значение. Хорошие проводники имеют малое сопротивление, плохие — высокое.

Различные проводники имеют разное сопротивление. Соединительные провода в электрической цепи имеют низкое сопротивление, чтобы как можно меньше уменьшить ток, проходящий через цепь. С другой стороны, резистивные проводники, используемые в нагревательных кабелях и электрических нагревательных приборах и резистивные нити накаливания лампочек имеют относительно высокое сопротивление, которые значительно нагреваются из-за своего высокого сопротивления при достаточном напряжении.

Нагревательный элемент для электрической плиты

Нагревательный элемент для электрической плиты

Установлено, что с повышением температуры сопротивление металлических проводников возрастает, а с понижением уменьшается. Это увеличение или уменьшение сопротивления для проводников из чистых металлов почти одинаково и в среднем равно 0,4% на 1° C . Сопротивление жидких проводников и угля с увеличением температуры уменьшается.

Электронная теория строения вещества дает следующее объяснение увеличению сопротивления металлических проводников с повышением температуры.

При нагревании проводник получает тепловую энергию, которая неизбежно передается всем атомам вещества, в результате чего возрастает интенсивность их движения. Возросшее движение атомов создает большее сопротивление направленному движению свободных электронов, отчего и возрастает сопротивление проводника.

С понижением же температуры создаются лучшие условия для направленного движения электронов, и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов .

Сверхпроводимость , т. е. уменьшение сопротивления металлов до нуля, наступает при огромной отрицательной температуре — 273° C , называемой абсолютным нулем. При температуре абсолютного нуля атомы металла как бы застывают на месте, совершенно не препятствуя движению электронов.

Этот материал проводит электричество без сопротивления до 15°C, но только под высоким давлением

Новый сверхпроводящий материал, который был открыт в 2021 году, зажатый между алмазами, может проводить электричество без электрического сопротивления при комнатной температуре

При очень низких температурах, близких к абсолютному нулю, колебательное движение молекул настолько мало, что свободные электроны движутся в них без всякого сопротивления. Ток, введенный в такой сильно охлаждаемый проводник, протекает непрерывно и без малейших потерь.

Постепенно охлаждая образцы платины и золота, голландский физик и химик Хейке Камерлинг-Оннес (1853 — 1926) обнаружил, что их электрическое сопротивление уменьшается. Когда он проделал свой опыт с ртутью, то при температуре около 4,27 К ее сопротивление стало резко падать, а при температуре около 4,22 К полностью исчезло. В последующие годы он открыл сверхпроводимость и в других металлах.

В 2015 году физик Института химии им. Макса Планка Михаил Еремец и его команда сжали водород и серу для достижения сверхпроводимости при -70°C. Спустя несколько лет две исследовательские группы экспериментировали с соединениями лантана и водорода при высоком давлении. Эксперименты показали, что сверхпроводимость возможна при более высоких температурах, таких как -23°C и -13°C, но некоторые эксперименты были успешными и при 7°C.

Что еще почитать:

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Как и почему изменяется электрическое сопротивление

Электрическое сопротивление — это свойство материала противостоять движению электрического тока. Оно определяет, как легко или трудно ток может протекать через материал. Изменение электрического сопротивления может быть вызвано различными факторами и имеет важные последствия для различных электрических и электронных устройств.

Один из ключевых факторов, влияющих на изменение электрического сопротивления, — это изменение физических свойств материала, через который протекает электрический ток. Например, при изменении температуры материала, его сопротивление может меняться.

Обычно сопротивление металлов увеличивается с увеличением температуры, в то время как у полупроводников оно может уменьшаться. Это объясняется изменением количества свободных электронов и тепловым движением атомов в материале.

Другой фактор, влияющий на изменение сопротивления, — это геометрия проводника или элемента схемы. Сопротивление прямо пропорционально длине проводника и обратно пропорционально его площади поперечного сечения. Это объясняет, почему тонкий провод имеет большее сопротивление, чем толстый провод той же длины и материала.

Например, если длина проводника увеличивается или его сечение уменьшается, сопротивление также увеличивается. Это связано с увеличением пути, который должен пройти электрический ток, или с уменьшением количества свободных носителей заряда.

Сопротивление также может изменяться под воздействием внешнего поля, например, магнитного или электрического.

В некоторых материалах сопротивление может меняться в зависимости от приложенного напряжения или тока. Это явление называется переменным сопротивлением и используется в различных устройствах, таких как резисторы с переменным сопротивлением или термисторы, которые меняют свое сопротивление в зависимости от температуры.

Лабораторный стенд по основам электротехники

Почему возникает сопротивление

Сопротивление возникает из-за взаимодействия электрического тока с материалом, через который он проходит. Это взаимодействие проявляется в виде различных физических явлений, которые препятствуют свободному движению заряженных частиц (обычно электронов) внутри материала.

Основные факторы, влияющие на возникновение сопротивления, включают:

  • Столкновения электронов: При движении электронов через материал они могут сталкиваться с атомами, ионы или другими дефектами в структуре материала. Эти столкновения вызывают изменение направления движения электронов и приводят к рассеянию энергии, что создает сопротивление.
  • Ионизация и диссоциация: В некоторых материалах, особенно в газах и электролитах, электрический ток вызывает ионизацию или диссоциацию молекул. Это приводит к образованию положительных и отрицательных зарядов, которые создают электрическое поле, препятствующее движению заряженных частиц и создающее сопротивление.
  • Влияние температуры: Повышение температуры материала может увеличить его сопротивление. Это связано с увеличением количества столкновений электронов с атомами, ионами или фононами (квантами колебаний решетки) вещества при повышении их теплового движения.
  • Геометрические факторы: Форма и размеры проводника также влияют на его сопротивление. Более узкий или длинный проводник имеет большее сопротивление по сравнению с широким и коротким проводником той же материальной составляющей.

Сопротивление можно описать с помощью закона Ома, который говорит о том, что сила тока, протекающего через проводник, пропорциональна напряжению, приложенному к этому проводнику, и обратно пропорциональна его сопротивлению: Закон Ома для участка цепи

Почему уменьшается сопротивление

Уменьшение электрического сопротивления может происходить по разным причинам в зависимости от материала и условий. Вот несколько основных причин, почему сопротивление может уменьшаться:

  • Сопротивление может уменьшаться при повышении температуры. Это объясняется тепловым движением атомов в материале, которое увеличивает подвижность электронов и, следовательно, уменьшает их столкновения с примесями или другими дефектами в материале. В результате сопротивление уменьшается, и электрический ток может легче протекать через материал.
  • Добавление примесей или легирование материала может изменить его электрические свойства, включая сопротивление. Некоторые примеси могут увеличить концентрацию свободных носителей заряда или улучшить их подвижность, что приводит к уменьшению сопротивления. Примером такого материала является легированный полупроводник, используемый в транзисторах или диодах.
  • Изменение структуры материала может также влиять на его сопротивление. Например, в некоторых материалах, таких как металлы, сопротивление может уменьшаться при растяжении или деформации материала. Это связано с изменением межатомных расстояний и электронной структуры материала.
  • В наномасштабных структурах, таких как квантовые точки или нанопроволоки, эффекты квантовой механики могут приводить к уменьшению сопротивления. В этих структурах электроны ограничены пространством и имеют ограниченное количество доступных энергетических состояний, что может способствовать более свободному движению электронов и уменьшению сопротивления.

Почему увеличивается сопротивление

Увеличение электрического сопротивления также может быть обусловлено различными факторами. Вот несколько основных причин, почему сопротивление может увеличиваться:

  • Сопротивление может увеличиваться при повышении температуры. Это происходит из-за увеличения количества столкновений электронов с атомами материала, вызванных их более активным тепловым движением. В результате увеличивается электрическое сопротивление.
  • Если поверхность проводника окисляется или загрязняется, это может привести к увеличению его сопротивления. Окисленные слои или наличие загрязнений на поверхности могут создавать дополнительное сопротивление для протекающего тока.
  • Изменение состава материала может привести к увеличению его сопротивления. Например, добавление примесей или изменение концентрации свободных носителей заряда может увеличить сопротивление материала.
  • В некоторых материалах сопротивление может увеличиваться с увеличением напряжения или тока. Это происходит из-за эффектов насыщения, связанных с наличием ограниченного количества свободных носителей заряда или ограничений на их движение в материале.

Основы электротехники - постоянный ток

У каких материалов сопротивление повышается с увеличением температуры, а у каких уменьшается?

В общем случае, повышение температуры может привести как к увеличению, так и к уменьшению сопротивления в зависимости от материала. Однако существуют два основных класса материалов, у которых сопротивление ведет себя по-разному при изменении температуры: металлы и полупроводники.

В большинстве металлов сопротивление увеличивается с увеличением температуры. Это связано с увеличением количества столкновений электронов с атомами вещества при повышении их теплового движения.

При повышении температуры атомы колеблются более интенсивно, создавая больше препятствий для свободного движения электронов. Таким образом, в металлах сопротивление возрастает при повышении температуры.

В отличие от металлов, у большинства полупроводников сопротивление уменьшается с увеличением температуры.

При повышении температуры энергия теплового движения стимулирует свободные электроны в полупроводнике, делая их более подвижными. Это уменьшает вероятность их столкновений с примесями или дефектами, что ведет к снижению сопротивления полупроводника.

Однако стоит отметить, что существуют исключения в обоих классах материалов, и некоторые металлы и полупроводники могут иметь необычное поведение сопротивления при изменении температуры.

Также стоит учесть, что речь идет о поведении сопротивления в определенном температурном диапазоне, и за пределами этого диапазона могут действовать другие факторы, которые могут изменить характеристики материала.

Для чего нужно знать как изменяется сопротивление

Изменение электрического сопротивления имеет важное значение для работы электрических устройств.

Например, сопротивление проводников в электрической цепи определяет потери энергии в виде тепла и эффективность передачи энергии.

Контроль сопротивления в различных электрических и электронных устройствах позволяет регулировать и управлять электрическим током, обеспечивая надлежащую работу устройств.

Изменение сопротивления также играет важную роль в различных электронных приборах и датчиках.

Например, термисторы используются для измерения и контроля температуры. Их сопротивление меняется с изменением температуры, что позволяет определить и регулировать тепловые процессы в системе.

Другой пример — фотодиоды и фоторезисторы, которые изменяют свое сопротивление в зависимости от освещенности. Это позволяет использовать их для измерения светового потока или автоматического регулирования освещенности.

Изменение сопротивления также может быть использовано для защиты электрических цепей от повреждений. Резисторы используются в цепях сброса напряжения, чтобы предотвратить повышенные значения тока при перегрузке или коротком замыкании. Они действуют как ограничители тока, поглощая избыточную энергию и предотвращая повреждение устройств.

Наконец, изменение электрического сопротивления играет важную роль в области микроэлектроники.

Материалы с переменным сопротивлением, такие как ферромагнитные материалы или полупроводники, используются для создания элементов памяти или регулирования сигналов в электронных устройствах.

Также, полевые транзисторы, которые управляют током с помощью изменения сопротивления в канале, являются ключевыми компонентами микроэлектронных устройств.

Изменение электрического сопротивления играет значимую роль в функционировании электрических устройств и систем. Оно позволяет контролировать ток, измерять различные параметры, регулировать энергию и обеспечивать надежность работы устройств. Понимание этих процессов важно для разработки новых технологий и оптимизации существующих электрических и электронных устройств.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *