Какие достоинства характерны для электроизмерительных приборов
Перейти к содержимому

Какие достоинства характерны для электроизмерительных приборов

  • автор:

Достоинства и недостатки электрических приборов.

К достоинствам приборов электростатической системы относятся широкий частотный диапазон, ничтожное потребление энергии, независимость показаний от внешних магнитных полей.

К недостаткам следует отнести низкую чувствительность, невысокую точность, необходимость экранирования измерительного механизма от влияния внешних электрических полей.

Приборы электростатической системы в основном используются в лабораторной практике для измерения напряжений в высокоомных цепях на частотах от нескольких герц до нескольких мегагерц. Применение электронных усилителей позволяет значительно увеличить чувствительность приборов и использовать их в качестве милливольтметров. Применение емкостных делителей расширяет верхний предел измерения вольтметров до значений порядка нескольких киловольт. Емкостный делитель, показанный на рис. 2.22, имеет коэффициент деления и обеспечивает увеличение верхнего предела измерения вольтметра в 1/Л = С2/С7 + 1 раз. (Это справедливо, если собственная емкость электростатического вольтметра много меньше С2. В противном случае значение к должно быть уточнено).

К достоинствам приборов электромагнитной системы относятся: простота конструкции, низкая стоимость, надежность, способность выдерживать большие перегрузки, пригодность для измерения в цепях как постоянного, так и переменного тока.

Недостатками являются: большое собственное потребление энергии, малая точность, малая чувствительность, сильное влияние внешних магнитных полей.

Приборы электромагнитной системы применяются в основном в качестве щитовых амперметров и вольтметров переменного тока промышленной частоты. Класс точности этих приборов 1,5 и 2,5. В некоторых особых случаях они используются для работы на повышенных частотах: амперметры до 8000 Гц, вольтметры до 400 Гц, Используются они и в лабораторной практике как переносные приборы классов точности 0,5 и 1,0.

Измерительная машина. Устройство. Принцип действия. Область применения.

Координатно-измерительная машина (КИМ) — устройство для измерения физических, геометрических характеристик объекта. Машина может управляться вручную оператором или автоматизированно компьютером. Измерения проводятся посредством зонда, прикрепленного к подвижной оси машины. Измерительные зонды могут быть механического, оптического, лазерного типа, дневного света, и другими.

Типичная «мостовая» КИМ является трехосной с X, Y и Z осями. Оси ортогональны друг к другу и образуют обычную трехмерную систему координат. Каждая ось имеет свой масштаб, что определяет расположение этой оси. Машина считывает данные с сенсорного датчика, по указанию оператора или компьютера. Затем машина использует X, Y, Z координаты каждой из этих точек, чтобы определить размер и расположение. Как правило, точность измерений координатной машины порядка микрон, или микрометров, что составляет одну миллионную часть метра.

КИМ, как правило, используется в производственном и сборочном процессе для проверки размеров деталей или проверки качества сборки в сравнении с требуемым дизайном. После сбора X, Y, Z положений множества точек детали, полученные массивы данных анализируются с помощью различных регрессионных алгоритмов. Эти данные о точках собираются с помощьюзонда, который позиционируется оператором или автоматически с помощью прямого управления компьютером. КИМ может быть запрограммирована на конвейерный поточный анализ, что позволяет считать КИМ специализированной формой промышленного робота.

Технические подробности. Основные части КИМ

Координатно-измерительные машины включают в себя три основных модуля:

  • основная структура, обеспечивающая базу (как правило гранитную) для обеспечения платформы для трех осей движения;
  • система зондирования;
  • система сбора данных и управления как правило, состоит из контроллера, компьютера и прикладного программного обеспечения.

Использование и применение

Координатно измерительные машины часто используются для:

  • измерения габаритов и размеров деталей;
  • измерения профиля деталей;
  • измерения углов или ориентации;
  • построения карт рельефа;
  • оцифровки изображений;
  • измерения сдвигов.
  • Противоаварийная защита
  • Возможность программирования и автоматизированного контроля действий машины
  • Обратное проектирование, реверс-инжиниринг
  • Возможность использования в цеху предприятий
  • SPC программное обеспечение и режим температурной компенсации.
  • Возможность импорта CAD-моделей
  • Соответствие стандартам DMIS

Координатно измерительные машины производятся в широком диапазоне размеров и конструкций с различными технологиями зондов. Ими можно управлять вручную или автоматически через прямое управлением компьютера. Они предлагаются в различных конфигурациях, таких как настольный, карманный и портативный.

Каковы достоинства цифровых измерительных приборов?

Достоинства:
· Высокая точность прибора
· Широкий диапазон измерений
· Малая потребляемая мощность
· Удобный вид индикации
· Цифровой код
· Связь с другими устройствами обработки информации
· Расширение функциональности (автоматизации), например внесение поправки по температуре

Остальные ответы

Работуют в любом положении. Не требуют отсчета по шкале. Автоматический выбор предела измерений.

Метрология и стандартизация

Метроло́гия — наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности. Предметом метрологии является извлечение количественной информации о свойствах объектов с заданной точностью и достоверностью; нормативная база для этого — метрологические стандарты.

Метрология состоит из трёх основных разделов:

  • Теоретическая или фундаментальная — рассматривает общие теоретические проблемы (разработка теории и проблем измерений физических величин, их единиц, методов измерений).
  • Прикладная — изучает вопросы практического применения разработок теоретической метрологии. В её ведении находятся все вопросы метрологического обеспечения.
  • Законодательная — устанавливает обязательные технические и юридические требования по применению единиц физической величины, методов и средств измерений.

Стандартиза́ция — деятельность по разработке, опубликованию и применению стандартов, по установлению норм, правил и характеристик в целях обеспечения безопасности продукции, работ и услуг для окружающей среды, жизни, здоровья и имущества, технической и информационной совместимости, взаимозаменяемости и качества продукции, работ и услуг в соответствии с уровнем развития науки, техники и технологии, единства измерений, экономии всех видов ресурсов, безопасности хозяйственных объектов с учётом риска возникновения природных и техногенных катастроф и других чрезвычайных ситуаций, обороноспособности и мобилизационной готовности страны.

Стандартизация направлена на достижение оптимальной степени упорядочения в определенной области посредством установления положений для всеобщего и многократного применения в отношении реально существующих или потенциальных задач.

За реализацию норм стандартизации отвечают органы стандартизации, наделенные законным правом руководить разработкой и утверждать нормативные документы и другие правила, придавая им статус стандартов.

В области промышленности стандартизация ведет к снижению себестоимости продукции, поскольку:

  • позволяет экономить время и средства за счет применения уже разработанных типовых ситуаций и объектов;
  • повышает надежность изделия или результатов расчетов, поскольку применяемые технические решения уже неоднократно проверены на практике;
  • упрощает ремонт и обслуживание изделий, так как стандартные узлы и детали — взаимозаменяемые (при условии, что сборка осуществлялась без пригоночных операций).

На нашем сайте предоставлены учебные материалы для студентов, по метрологии и стандартизации. Суммарно около

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Цифровой измерительный прибор (мультиметр)

Цифровой измерительный прибор (ЦИП или мультиметр) — это измерительный прибор, в котором входной сигнал преобразуется в дискретный выходной сигнал и представляется в цифровой форме. Под дискретным сигналом понимают прерывистый сигнал, в котором информация содержится не в интенсивности носителя сигнала (например, в значениях напряжения, тока), а в числе элементов сигнала (например, в числе импульсов напряжения) и их взаимном расположении во времени или пространстве. Систему таких сигналов для представления информации называют кодом. Непрерывную величину часто называют аналоговой величиной.

image

Цифровые измерительные приборы (мультиметры) относятся к приборам непосредственной оценки, так как позволяют сразу отсчитать по шкале значение измеряемой величины.

Электронные цифровые измерительные приборы (мультиметры) имеют ряд преимуществ перед механическими: существенно большую точность, более высокую надежность из-за отсутствия движущихся частей, стойкость к вибрации и ударам и, как правило, экономичность, меньшие габариты и лучший внешний вид.

Основные характеристики

К основным характеристикам цифровых измерительным приборов (мультиметров) относятся:

  • погрешности;
  • диапазон измерений;
  • входное сопротивление прибора;
  • порог чувствительности;
  • быстродействие;
  • помехоустойчивость.

Классификация измерительных приборов

По способу индикации

  • показывающий измерительный прибор — измерительный прибор, допускающий только отсчитывание показаний значений измеряемой величины, например спидометр;
  • регистрирующий измерительный прибор — измерительный прибор, в котором предусмотрена регистрация показаний. Например, гиетограф — прибор для измерения и регистрации изменения интенсивности дождя во времени. Регистрация значений может осуществляться в аналоговой или цифровой формах. Различают самопишущие и печатающие регистрирующие приборы.

По методу измерений

  • измерительный прибор прямого действия — измерительный прибор, например, манометр, амперметр в котором осуществляется одно или несколько преобразований измеряемой величины и значение ее находится без сравнения с известной одноименной величиной;
  • измерительный прибор сравнения — измерительный прибор, предназначенный для непосредственного сравнения измеряемой величины с величиной, значение которой известно.

По форме представления показаний

  • аналоговый измерительный прибор — измерительный прибор, показания которого или выходной сигнал являются непрерывной функцией изменений измеряемой величины (вольтметр, амперметр);
  • цифровой измерительный прибор — измерительный прибор, показания которого представлены в цифровой форме.

По другим признакам

  • суммирующий измерительный прибор — измерительный прибор, показания которого функционально связаны с суммой двух или нескольких величин, подводимых к нему по различным каналам, например: ваттметр, суммирующий мощности нескольких электрических генераторов.
  • интегрирующий измерительный прибор — измерительный прибор, в котором значение измеряемой величины определяются путем ее интегрирования по другой величине (счетчики: электрические, газовые).

Полезные ссылки

Мультиметры цифровые

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *