Анализ короткого замыкания и конструкция автоматического выключателя
Серкин, В. Г. Анализ короткого замыкания и конструкция автоматического выключателя / В. Г. Серкин. — Текст : непосредственный // Молодой ученый. — 2018. — № 42 (228). — С. 16-21. — URL: https://moluch.ru/archive/228/53200/ (дата обращения: 16.03.2024).
В статье представлено поведение системы в условиях неисправности и направлено на проектирование автоматического выключателя. Целью работы является анализ короткого замыкания для проектирования энергосистемы с учетом всех условий, таких как нагрузка линии, конструкция автоматического выключателя, настройка реле, переходные процессы и т. д. В основном для исследования короткого замыкания необходимо провести анализ потока нагрузки, а затем с учетом состояния короткого замыкания анализ. Для симуляции исследования используется программное обеспечение MiPOWER и PsCAD/EMTDC.
Ключевые слова: сопротивление дуги, переходной процесс, короткое замыкание, гармоники, электрическая система.
Исследование короткого замыкания в энергосистеме является основным шагом в планировании современных электрических сетей. На основе таких результатов и исследований выполняется настройка и координация защитного устройства (реле), конструирование компонентов распределительных устройств. Исследование проводится с использованием компьютерного программного обеспечения, сначала путем моделирования системы (проводники, трансформаторы, генераторы), а затем имитируя ошибки. Неисправность обычно приводит к сильному току, протекающему по линиям, и если не обеспечивается надежная защита, может произойти повреждение в силовом устройстве. Здесь термин «симметричная неисправность» относится к тем условиям, в которых все три фазы энергосистемы заземлены в одной и той же точке. По этой причине симметричные неисправности иногда также называются трехлинейными неисправностями. Несимметричные короткие замыкания дают максимальные токи короткого замыкания и составляют основу расчетов токов на коммутационных устройствах. Короткие замыкания, связанные с одной или несколькими фазами и землей, называются несимметричными короткими замыканиями. При замыкании одной фазы на землю или двух фаз на землю может превышать значения токов КЗ трехфазных симметричных замыканий. Таким образом, расчеты короткого замыкания являются первичным исследованием, когда планируется разработка, модернизация или расширение энергосистемы.
Теоретическая часть
Ток короткого замыкания.
При условии неисправности ток на линии при неисправной шине рассчитывается как:
=
VJ f — напряжение на линии после кз: Iij f — ток протекающий между линиями; Vi f — напряжение линии до кз, на i-ой линии и j-ой линии; Zij — сопротивление между двумя линиями. Ток короткого замыкания напрямую связан с размером и мощностью источников питания, которые поддерживают систему и, как правило, не зависят от тока нагрузки в цепи. Чем больше мощность источников питания, питающих систему, тем больше значение тока короткого замыкания.
Симметричное короткое замыкание.
Нас интересуют симметричные токи повреждения. Если огибающие положительного и отрицательного пиков текущего сигнала симметричны вокруг нулевой оси, они называются «симметричными токовыми» огибающими. Общий ток короткого замыкания, доступный в системе распределения, обычно поступает из нескольких источников, которые могу быть сгруппированы в три основные категории. Первая — это система снабжения коммунальных услуг, предоставляющая объект, который действует как большой удаленный генератор. Второй включает в себя локальные генераторы либо на заводе, либо поблизости от утилиты. Третья категория источников — синхронные и асинхронные двигатели, которые расположены на многих заводах и объектах. Общий ток короткого замыкания, который имеет устойчивые переменные, затухающие переменные и затухающие компоненты постоянного тока, может быть выражен уравнением:
Где Iср.кв.— симметричная постоянная среднеквадратичная величина тока
k-переменная, зависящая от количества и мощности нагрузок
t-время в секундах.
Величина и длительность асимметричного тока зависят от следующих параметров: а) отношения X/R неисправного контура, б) фазовый угол напряжения во время короткого замыкания.
Описание тока при коротком замыкании.
Чем больше отношение X/R, тем больше будет время затухания асимметричного тока. Для конкретного отношения X/R угол приложенного напряжения во время инициирования короткого замыкания определяет степень асимметрии тока короткого замыкания, которая будет существовать для этого отношения X/R. В чисто индуктивной схеме максимальная постоянная составляющая тока создается при инициировании короткого замыкания в момент, когда приложенное напряжение равно нулю (a=0 0 или 180 0 при использовании синусоидальных функций). Затем ток будет полностью смещен либо в положительном, либо в отрицательном направлении. Максимальная асимметрия для любого отношения X / R цепи часто возникает, когда короткое замыкание инициируется вблизи нулевого напряжения. Начальная составляющая тока постоянного тока не зависит от того, остается ли постоянная составляющая постоянного тока или падает от ее начального значения. Для любого отношения X / R цепи сигналы напряжения и тока будут не в фазе друг от друга на угол, соответствующий количеству реактивного сопротивления в цепи, по сравнению с величиной сопротивления в цепи. Этот угол равен
.
Для чисто индуктивной схемы фаза волны тока будет смещена от фазы напряжения на 90 ° (отставание). Когда к цепи добавляется сопротивление, это угловое смещение будет уменьшаться до нуля. В чисто резистивной цепи напряжение и ток будут полностью синфазными и без смещения. Во всех практических схемах, содержащих сопротивление и реактивность, компонент постоянного тока также будет спадать до нуля, поскольку энергия, представленная компонентом постоянного тока, рассеивается как потери тепла I 2 R в цепи. Скорость затухания компонент постоянного тока зависит от сопротивления и реактивности контура. В практических схемах компонента постоянного тока полностью затухает к нолю в течение 1–30 циклов.
Расчет тока симметричных составляющих.
В предыдущем обсуждении был рассмотрен однофазный ток, чтобы понять асимметрию. В трехфазной системе с трехфазным замыканием сумма тока в любой момент времени в трех фазах должна ровняться нулю. Поэтому, если одна фаза имеет максимальное смещение, то две другие фазы должны иметь отрицательное смещение для баланса тока. Постоянная времени затухания всех фаз одинакова. Максимальное магнитное усилие, создаваемое на элементе схемы, таком как автоматический выключатель, происходит в тот момент, когда ток замыкания через элемент схемы максимален. С точки зрения проектирования и применения оборудования особый интерес представляет фаза с наибольшим пиком тока повреждения. Это текущее значение подвергает оборудование воздействию самых сильных магнитных сил. Наибольший пик тока замыкания обычно возникает в первом цикле тока, когда инициирование тока короткого замыкания близко или совпадает с приложенным напряжением, проходящим через ноль. Это условие называется условием максимальной асимметрии. При применении оборудования, которое может нести ток повреждения, такой как выключатели, переключатели, трансформаторы и предохранители, должен быть определен общий доступный ток короткого замыкания. Для правильного применения оборудования также требуется знание минимального критерия X / R или максимального коэффициента мощности применяемого тока повреждения. Пиковые величины тока короткого замыкания важны для некоторых устройств, таких как низковольтные выключатели, в то время как асимметричные среднеквадратические значения величины одинаково значимы для высоковольтных выключателей. Это приводит к необходимости разработки расчета короткого замыкания, зависящего от отношения X / R, для правильного сравнения с применяемым оборудованием. При вычислении тока неисправности необходимо учитывать компонент переменного тока и переходную составляющую постоянного тока рассчитанного тока повреждения для определения максимального пикового значения или среднеквадратичного значения. которая может иметь место в цепи. Когда расчетное отношение ошибки X / R больше, чем отношение X / R испытания оборудования, при оценке применения оборудования следует учитывать более высокий общий ток повреждения, связанный с более высоким коэффициентом X / R. В этом резюме было показано, что эффекты асимметрии зависят только от отношения точки ошибки X / R схемы и момента инициирования отказа. Ссылки показывают, что эффекты максимальной величины тока повреждения и энергетического содержания первого токового цикла намного больше, чем влияние среднеквадратичного значения. Для условия максимальной асимметрии. теоретически может быть рассчитан ток первого цикла в 1,732 раза по сравнению с установившимися среднеквадратичными значениями. Однако максимальный ток первого цикла для одного и того же состояния может быть в два раза выше пика стационарной составляющей тока, а магнитные силы могут быть в четыре раза больше, чем у среднеквадратичных симметричных компонент переменного тока. С точки зрения дизайна оборудования эти пиковые токи и энергетические сравнения являются максимальными, что должно выдерживать оборудование. Для оборудования с рейтингом ANSI максимальный асимметричный среднеквадратичный ток обеспечивает этот показатель максимальной мощности. Важно знать термины, определяющие характерные колебания тока короткого замыкания. Испытательные токи короткого замыкания, используемые для выключателей и номиналов прерывания плавких предохранителей, имеют различные процедуры испытаний и коэффициенты коэффициента мощности (отношение X / R). Например, высоковольтные силовые выключатели используют среднеквадратичные испытания на прерывание тока с коэффициентом мощности 6,7 % (X / R = 15), в то время как низковольтные выключатели используют пиковые токи при коэффициенте мощности 15 % (X / R = 6,59). У формованных корпусов и изоляторов с изолированным корпусом есть разные (от 6,7 % и 15 %) коэффициенты мощности испытания, которые необходимо учитывать. Если расчетное значение коэффициента ошибки X / R больше, чем испытательное отношение X / R отключающего устройства, тогда происходит расчет тока нагрузки оборудования
Исследование схемы 220кВ.
Отношение X / R важно, поскольку оно определяет пиковый асимметричный ток повреждения. Асимметричный ток короткого замыкания может быть намного больше, чем симметричный ток замыкания.
Рис. 1. Исследуемая схема
В импедансе силовой системы имеется два компонента. Первый называется реактивным (X). Реакция зависит от двух факторов: (1) индуктивность и (2) частота и второй компонент — сопротивление, коэффициент мощности равен
cos(tan -1 (X / R)). Если коэффициент мощности равен единице (1), то импеданс имеет только активное сопротивление. Если коэффициент мощности равен нулю, то импеданс имеет только реактивное сопротивление. Поэтому коэффициент мощности и отношение X / R — это можно сказать одно и то же. Так как коэффициент мощности уменьшается, отношение X / R увеличивается. Сразу после возникновения неисправности текущий сигнал больше не является синусоидальной волной. Вместо этого его можно представить суммой синусоидальной волны и затухающей экспонентой. Затухающая экспоненциальная составляющая, добавленная к синусоидальной волне, приводит к тому, что ток достигает гораздо большего значения, чем ток синусоидальной волны. Форма волны, равная сумме синусоидальной волны и затухающей экспоненты, называется асимметричным током, потому что форма волны не имеет симметрии выше и ниже временной оси. Фактическую форму асимметричного тока повреждения трудно предсказать, потому что это зависит от того, в какое время в сигнале цикла напряжения возникает неисправность. Однако наибольшего значения асимметричный ток повреждения возникает тогда, когда неисправность происходит в точке, и напряжение равно нулю. Затем асимметричный ток замыкания зависит только от отношения X / R или коэффициента мощности, а также от величины симметричного тока замыкания. На рисунке 2 показано, как отношение пикового асимметричного тока к симметричному току RMS изменяется с отношением X / R (среднеквадратичный симметричный ток равен пику симметричного тока, деленный на квадратный корень из 2.)
Рис. 2. Пиковое значение асимметричного тока как функция симметричного среднеквадратичного тока
Где IСИМ является симметричным компонентом переменного тока переменного тока через 10 мс после отказа. Как и в случае короткого замыкания систем с шиной 132 кВ, различные параметры с условием предварительной неисправности вычисляют как в момент сбоя, так и по компоненту после критической неисправности, как показано ниже, в таблице приведены данные о неисправностях и график для ошибки на шине номер 38.
Результаты показывают величину тока, а также уровень неисправности шины, поступающей от шины генератора.
Результат короткого замыкания на шине номер 39 снапряжением 220 кВ
Как объяснялось ранее, использование графика тока повреждения для конструкции выключателя, а также системных реле и переключающих передач.
Рис. 3. Короткое замыкание с затухающей составляющей компоненты переменного тока
Компоненты пика тока можно рассчитать, умножая начальное значение тока на коэффициент гребня 2,07. Эти факторы зависят от отношения X / R импеданса рабочей точки и времени размыкания контакта выключателя.
Анализ конструкции автоматического выключателя
При выборе автоматических выключателей важно удостовериться, что бы номинальные значения выключателей не были превышены в их применении. Эти значения номиналов в основном получены из расчетов тока короткого замыкания, доступных на месте размещения оборудования. Поэтому отправной точкой является тщательный анализ неисправности энергосистемы. Обычно рассматриваются два типа выключателей. К первому типу выключателей относятся устройства с номинальным током выключения. К таким устройствам относятся автоматические выключатели и плавкие предохранители. Номинальный ток выключения означает значение максимального тока короткого замыкания, при котором сработает устройство. Второй тип — устройства с выдержкой выключения. Устройства с выдерживаемыми номиналами не предназначены для прерывания тока короткого замыкания, а скорее для «проезда» короткого замыкания без повреждений. Характеристика отражает способность устройства задерживаться во время сбоя. ВН (восстанавливающееся напряжение переменного тока после КЗ) связано с так называемой диэлектрической фазой явлений дуги. Завышение высоковольтных автоматических выключателей (АВ) является постоянно растущей проблемой, поскольку энергетические системы во всем мире, как правило, все более связаны. Симметричные и асимметричные токи короткого замыкания; токи нагрузки и напряжение восстановления переходного процесса (ВН) являются одними из наиболее важных параметров для анализа АВ. Хорошо известно, что диэлектрические напряжения, налагаемые внутри АВ, выше, когда прерываются симметричные токи короткого замыкания. Таким образом, пренебрежение текущей асимметрией приведет к консервативным значениям ВН. Более того, поскольку максимальное значение ВН происходит до первого пика текущей волны, вычисление может быть выполнено только с использованием первого текущего полупериода. Большинство коротких замыканий, возникающих в реальной энергосистеме, несимметричны. Тем не менее, изучение симметричных трехфазных замыканий важно, потому что, несмотря на то, что его появление настолько редки, оно более тяжелое с точки зрения устойчивости переходной системы энергосистемы, чем неуравновешенные короткие замыкания. Кроме того, это исследование полезно для получения синхронных динамических параметров машины и для понимания переходного поведения электроэнергетических систем при возникновении короткого замыкания.
Заключение
Исследования короткого замыкания проводятся для определения величины тока, протекающего по всей силовой системе через различные промежутки времени после отказа. Величина тока через силовую систему после ошибки изменяется со временем, пока не достигнет состояния устойчивого состояния. Во время сбоя система питания вызывается для обнаружения, прерывания и изоляции этих неисправностей. Повреждения, наносимые оборудованию, зависят от величины тока, которая зависит от времени срабатывания неисправности. Такие расчеты выполняются для различных типов сбоев, таких как трехфазное, однолинейное замыкание на землю, двойное замыкание на землю и разное расположение системы. Вычисленные результаты короткого замыкания используются для выбора предохранителей, автоматических выключателей и защитных реле. Поскольку от моделирования на MiPower и PSCAD пользователь может смоделировать любую энергосистему для проектной точки зрения и с точным моделированием, результат будет подходить под точную проверку, как это было проверено в тематическом исследовании.
- Щербаков Е. Ф. Электроснабжение и электропотребление на предприятиях: Науч.-издат центр ИНФРА-М, 2015–596 с.
- Щедрин В. А. Электромагнитные переходные процессы в электрических системах: учеб, пособие/ В А. Щедрин, Чебоксары: Изд-во Чуваш, уча, 2007. — 422 с.
- Владимир В.-Терзия. Исследования коротких замыканий в энергосетях с использованием моделирования ошибок. ИЕЕЕ Лаусэйн Пауер Тек, 2007
- Куликов Ю. А. Переходные процессы в электрических системах: Учеб. пособие / Ю. А. Куликов. Новосибирск; М., 2003.
Основные термины (генерируются автоматически): короткое замыкание, ток, коэффициент мощности, отношение, переменный ток, асимметричный ток, синусоидальная волна, автоматический выключатель, величина тока, максимальная асимметрия.
Ток короткого замыкания. Виды и работа. Применение и особенности
Нормальным установившимся режимом работы электроустановки считается такой режим, параметры которого находятся в пределах нормы. Ток короткого замыкания (ток КЗ) возникает при аварии в работе электроустановки. Он чаще всего появляется из-за повреждения изоляции токоведущих частей.
В результате короткого замыкания нарушается бесперебойное питание потребителей, и влечет за собой неисправности и выход из строя оборудования. Вследствие этого при подборе токоведущих элементов и аппаратов необходимо производить их расчет не только для нормальной работы, но и производить проверку по условиям предполагаемого аварийного режима, который может быть вызван коротким замыканием.
Виды коротких замыканий
Понятие короткого замыкания подразумевает электрическое соединение, которое не предусмотрено условиями эксплуатации оборудования между точками различных фаз, либо нейтрального проводника с фазой или земли с фазой (при наличии контура заземления нейтрали источника питания).
При эксплуатации потребителей напряжение питания может подключаться различными способами:
- По схеме трехфазной сети 0,4 киловольта.
- Однофазной сетью (фазой и нолем) 220 В.
- Источником постоянного напряжения выводами положительного и отрицательного потенциала.
В каждом отдельном случае может возникнуть нарушение изоляции в некоторых точках, вследствие чего возникает ток короткого замыкания.
Для 3-фазной сети переменного тока существуют разновидности короткого замыкания:
- Трехфазное замыкание.
- Двухфазное замыкание.
- Однофазное замыкание на землю.
- Однофазное замыкание на землю (Изолированная нейтраль).
- Двухфазное замыкание на землю.
- Трехфазное замыкание на землю.
При выполнении проекта снабжения электрической энергией предприятия или оборудования подобные режимы требуют определенных расчетов.
Причины повреждения изоляции
- Воздействие на изоляцию механическим путем.
- Электрический пробой токоведущих частей вследствие чрезмерных нагрузок или перенапряжения.
- Подобно нарушению изоляции можно считать причиной повреждения схлестывание неизолированных проводов воздушных линий от сильного ветра.
- Наброс металлических предметов на линию.
- Воздействие животных на проводники, находящиеся под напряжением.
- Ошибки в работе обслуживающего персонала в электроустановках.
- Сбой в функционировании защит и автоматики.
- Техническое старение оборудования.
- Умышленное действие, направленное на повреждение изоляции.
Последствия короткого замыкания
Ток короткого замыкания во много раз превышает ток при нормальной работе оборудования. Возможными последствиями такого замыкания могут быть:
- Перегрев токоведущих частей.
- Чрезмерные динамические нагрузки.
- Прекращение подачи электрической энергии потребителям.
- Нарушение нормального функционирования других взаимосвязанных приемников, которые подключены к исправным участкам цепи, из-за резкого снижения напряжения.
- Расстройство системы электроснабжения.
Принцип действия короткого замыкания
До начала возникновения короткого замыкания величина тока в электрической цепи имела установившееся значение iп. При резком коротком замыкании в этой цепи из-за сильного уменьшения общего сопротивления цепи электрический ток значительно повышается до значения iк. Вначале, когда время t равно нулю, электрический ток не может резко измениться до другого установившегося значения, так как в замкнутой цепи кроме активного сопротивления R, есть еще и индуктивное сопротивление L. Это увеличивает во времени процесс возрастания тока при переходе на новый режим.
В результате в начальный период короткого замыкания электрический ток сохраняет первоначальное значение iK = iно. Чтобы ток изменился, необходимо некоторое время. В первые мгновения этого времени ток повышается до максимального значения, далее немного снижается, а затем через определенный период времени принимает установившийся режим.
Период времени от начала замыкания до установившегося режима считается переходным процессом. Ток короткого замыкания можно рассчитать для любого момента в течение переходного процесса.
Ток КЗ при режиме перехода лучше рассматривать в виде суммы составляющих: периодического тока i пt с наибольшей периодической составляющей I пт и апериодического тока i аt (его наибольшее значение – I am).
Апериодическая составляющая тока КЗ во время замыкания постепенно затухает до нулевого значения. При этом ее изменение происходит по экспоненциальной зависимости.
Возможный максимальный ток КЗ считают ударным током iу. Когда нет затухания в начальный момент замыкания, ударный ток определяется:
I у – i пm + i аt=0’, где i пm является амплитудой периодической токовой составляющей.
Полезное короткое замыкание
Считается, что короткое замыкание является отрицательным и нежелательным явлением, от которого происходят разрушительные последствия в электроустановках. Оно может создать условия для пожара, отключения защитной аппаратуры, обесточиванию объектов и другим последствиям.
Однако ток короткого замыкания может принести реальную пользу на практике. Есть немало устройств, функционирующих в режиме повышенных значений тока. Для примера можно рассмотреть сварочный аппарат. Наиболее ярким примером для этого послужит электродуговая сварка, при работе которой накоротко замыкается сварочный электрод с заземляющим контуром.
Такие режимы короткого замыкания действуют кратковременно. Мощность сварочного трансформатора обеспечивает работу при таких значительных перегрузках. Во время сварки в точке соприкосновения электрода возникает очень большой ток. В итоге выделяется значительное количество теплоты, достаточное для расплавления металла в месте касания, и образования сварочного шва достаточной прочности.
Способы защиты
Еще в начале развития электротехники появилась проблема защиты электрических устройств от чрезмерных токовых нагрузок, в том числе и короткого замыкания. Наиболее простым решением стала установка плавких предохранителей, которые перегорали от их нагревания вследствие превышения тока определенной величины.
Такие плавкие вставки функционируют и в настоящее время. Их основным достоинством является надежность, простота и невысокая стоимость. Однако имеются и недостатки. Простая конструкция предохранителя побуждает человека после сгорания плавкого элемента заменить его самостоятельно подручными материалами в виде скрепок, проволочек и даже гвоздей.
Такая защита не способна обеспечить необходимой защиты от короткого замыкания, так как она не рассчитана на определенную нагрузку. На производстве для отключения цепей, в которых возникло замыкание, используют электрические автоматы. Они намного удобнее обычных плавких предохранителей, не требуют замены сгоревшего элемента. После устранения причины замыкания и остывания тепловых элементов, автомат можно просто включить, тем самым подав напряжение в цепь.
Существуют также более сложные системы защиты в виде дифференциальных автоматов. Они имеют высокую стоимость. Такие устройства отключают напряжение цепи в случае наименьшей утечки тока. Такая утечка может возникнуть при поражении работника током.
Другим способом защиты от короткого замыкания является токоограничивающий реактор. Он служит для защиты цепей в сетях высокого напряжения, где величина тока КЗ способна достичь такого размера, при котором невозможно подобрать защитные устройства, выдерживающие большие электродинамические силы.
Реактор представляет собой катушку с индуктивным сопротивлением. Он подключен в цепь по последовательной схеме. При нормальной работе на реакторе имеется падение напряжения около 4%. В случае возникновения КЗ основная часть напряжения приходится на реактор. Существует несколько видов реакторов: бетонные, масляные. Каждый из них имеет свои особенности.
Закон Ома при КЗ
В основе расчета замыканий цепи лежит принцип, который определяет вычисление силы тока по напряжению, путем его деления на подключенное сопротивление. Такой же принцип работает и при определении номинальных нагрузок. Отличие в следующем:
- При возникновении аварийного режима процесс протекает случайным образом, стихийно. Однако он поддается некоторым расчетам по разработанным специалистами методикам.
- В процессе нормальной работы электрической цепи сопротивление и напряжение находятся в уравновешенном режиме и могут незначительно изменяться в рабочих диапазонах в пределах нормы.
Мощность источника питания
По этой мощности выполняют оценку энергетической силовой возможности разрушительного действия, которое может осуществить ток короткого замыкания, проводят анализ времени протекания, размер.
Для примера рассмотрим, что отрезок медного проводника с площадью сечения 1,5 мм 2 длиной 50 см сначала подсоединили непосредственно к батарее «Крона». А в другом случае этот же кусок провода вставили в бытовую розетку.
В случае с «Кроной» по проводнику будет протекать ток КЗ, который нагреет эту батарею до выхода ее из строя, так как мощности батареи не достаточно для того, чтобы нагреть и расплавить подключенный проводник для разрыва цепи.
В случае с бытовой розеткой сработают защитные устройства. Представим, что эти защиты вышли из строя, и не сработали. В этом случае ток короткого замыкания будет протекать по бытовой проводке, затем по проводке всего подъезда, дома, и далее по воздушной линии или кабеля. Так он дойдет до трансформатора питания на подстанции.
В результате к трансформатору подсоединяется длинная цепь с множеством кабелей, проводов, различных соединений. Они намного повысят электрическое сопротивление нашего опытного отрезка провода. Однако даже в таком случае остается большая вероятность того, что этот кусок провода расплавится и сгорит.
Сопротивление цепи
Участок линии электропередач от источника питания до места короткого замыкания обладает некоторым электрическим сопротивлением. Его значение влияет на величину тока короткого замыкания. Обмотки трансформаторов, катушек, дросселей, пластин конденсаторов вносят свой вклад в суммарное сопротивление цепи в виде емкостных и индуктивных сопротивлений. При этом создаются апериодические составляющие, которые искажают симметричность основных форм гармонических колебаний.
Существует множество различных методик, с помощью которых производится расчет ток короткого замыкания. Они позволяют рассчитать с необходимой точностью ток короткого замыкания по имеющейся информации. Практически можно измерить сопротивление имеющейся схемы по методике «фаза-ноль». Это сопротивление делает расчет более точным, вносит соответствующие коррективы при подборе защиты от короткого замыкания.
Похожие темы:
- Ток и напряжение. Виды и правила. Работа и характеристики
- Закон Ома. Для цепей и тока. Формулы и применение
- Мощность электрического тока. Виды и работа. Особенности
- Пусковой ток. Типы и работа. Применение и особенности
- Атмосферное электричество. Что это. Виды и особенности
- Электричество. Электрический ток
- Закон Джоуля-Ленца. работа и применение. Особенности
- Электрический пробой. Виды и свойства. Особенности
- Электрическая прочность. Виды диэлектриков. Особенности
- Дуговой разряд. Процессы и применение. Особенности
Короткие замыкания на зажимах электрических генераторов
При работе станций, подстанций и сетей возможны ненормальные режимы их работы, приводящие к повреждениям и авариям. Большинство таких аварий происходит по причине возникновения коротких замыканий.
Коротким замыканием (КЗ) называется всякое не предусмотренное нормальным режимом работы соединение токоведущих частей отдельных фаз между собой, а в установках с заземленной нейтралью — также и с землей или с нулевым проводом (в четырехпроводных системах).
При эксплуатации электроустановки следует предотвращать всякую возможность появления коротких замыканий. Для отключения токов короткого замыкания на станциях и подстанциях устанавливаются автоматические выключатели, отделяющие поврежденные участки сети.
Электрическая энергия вырабатывается на станциях синхронными генераторами. Физические явления, происходящие в синхронном генераторе при коротком замыкании, весьма сложны. Здесь мы ограничимся лишь общим рассмотрением этих явлений. Если замкнуть зажимы всех трех фаз синхронного генератора, работающего под полным напряжением, то но его обмоткам пойдет ток короткого замыкания (ток КЗ).
В общем случае величина тока КЗ будет определяться величиной напряжения и полного сопротивления короткозамкнутой цепи. Применительно к генератору величина его тока КЗ будет определяться полем возбуждения и сопротивлением его обмоток.
У современных генераторов реактивное сопротивление обмоток значительно больше их активного сопротивления, поэтому ток, проходящий по обмоткам, будет почти чисто индуктивным. Следовательно, вектор тока КЗ будет отставать от вектора ЭДС почти на 90 о . При таком сдвиге фаз между токами и ЭДС мгновенное значение тока будет минимальным при максимальном значении ЭДС и, наоборот, наибольшим — при прохождении ЭДС через нуль.
Таким образом, величина или значение начального тока КЗ в обмотках генератора будет зависеть от момента, когда наступает короткое замыкание (т. е. от положения полюсов по отношению к обмотке статора, в которой индуктируется ЭДС).
При внезапном изменении сопротивления внешней цепи возникает переходный процесс, в течение которого изменяется и величина тока КЗ. Однако это изменение тока не может произойти мгновенно, так как цепь обладает значительной индуктивностью.
Переходный процесс осложняется также тем, что ЭДС генератора не остается постоянной, а изменяется под действием магнитного потока. В начальный момент времени после наступления короткого замыкания возникает так называемый ударный ток, наибольший по своей величине. Он в 1,41 — 2,55 раза превышает действующее значение периодической слагающей тока КЗ, который в свою очередь больше тока нормального режима и затухает до установившегося значения через 3 — 5 с.
Ударный ток короткого замыкания определяет наибольшие механические усилия, возникающие между токоведущими частями электроустановки. Наибольшее значение ударный ток имеет при коротком замыкании на зажимах генератора. Здесь он в 2,55 раза больше максимального действующего значения периодической слагающей тока КЗ.
Если короткое замыкание произошло в точке сети, удаленной от генератора, то ударный ток только в 1,41 раза больше действующего значения периодической слагающей тока короткого замыкания.
При коротком замыкании напряжение генератора заметно снижает c я из-за размагничивающего действия тока КЗ и связанного с этим уменьшения магнитного потока генератора и его ЭДС.
Для поддержания напряжения генератора на определенном уровнеприменяют автоматическое регулирование возбуждения (АРВ) на генераторах. При снижениях напряжения устройство АРВ действует на величину тока возбуждения генератора, автоматически увеличивая его. Это в свою очередь приводит к увеличению напряжения и ЭДС генератора.
Ток КЗ в начальный момент снижается, а затем возрастает, начиная с момента действия АРВ. Это действие сказывается на величине установившегося тока короткого замыкания, который при наличии устройства АРВ всегда больше, чем без него.
Короткие замыкания могут привести к нарушению устойчивости параллельно работающих генераторов станций и даже целых энергетических систем. Поэтому, чтобы правильно выбрать схему станции или подстанции, установить режимы их защиты, проводят расчеты токов короткого замыкания.
Эти расчеты выполняют для различных точек схемы электроснабжения с учетом сопротивлений генераторов, трансформаторов и отдельных участков линий. В расчетах должны быть учтены типы синхронных генераторов (турбо- или гидрогенераторов), их параметры, а также наличие или отсутствие устройств АРВ.
Значения токов КЗ, полученные в результате расчетов для различных точек, используют для выбора высоковольтной аппаратуры и токоведущих частей, их проверки на динамическую и термическую устойчивость действиям токов КЗ, выбора способов и схем защиты оборудования станций, подстанций и сетей.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
От каких двух параметров зависит ток короткого замыкания двигателя постоянного тока?
На твой прекрасный вопрос сумел впервые ответить дедушка Ом. Он даже целый Закон об этом написал. По аналогии длизкими отношениями между мужчиной и женщиной он выделил в качестве главных факторов его напряжение и ее сопротивление.
Остальные ответы
ток короткого замыкания зависит прежде всего от внутреннего сопротивления источника питания, и от сопротивления линии в которой возникло КЗ
теоретически в идеальном источнике питания сопротивление 0, и ток в цепи будет стремиться к бесконечности, НО
в реальности при возникновении КЗ и резком возрастании тока в цепи, проводники нагреваются что вызывает незначительное увеличение их сопротивления и увеличение выделяющейся на них мощности, что приводит опять же к нагреву и так по циклу,
в итоге получается кратковременный скачок тока и разрушение проводников, либо наиболее слабых участков.
I=U/R
если R -> 0 то при любых значениях U, I стремится к бесконечности
Ну не совсем так. От этихвеличин зависит номинальный ток ДПТ. А вот для расчёта тока короткого замыкания требуется целый расчёт. Кроме того различают металлическое короткое замыкание, дуговое и т. д. Требуется составить схему замещения ДПТ и рассмотреть все варианты к. з.
1. Сопротивление кабелей в начальный момент короткого замыкания зависит от температуры окружающей среды и величины тока в предшествовавшем короткому замыканию режиме. Т. к. в электроустановках оперативного постоянного тока токовая загрузка кабелей.