Влияют ли обороты на расход топлива?
Обороты двигателя – это одна из важнейших характеристик работы силового агрегата. Она демонстрирует количество оборотов, которое совершает коленчатый вал за 1 минуту. Соответственно, чем выше это значение – тем больше мощности производит ДВС. Отметим, что номинальные показатели по лошадиным силам достигаются только при определенных оборотах двигателя.
Холостые обороты – это минимальное значение, которое достигается при работе ДВС без нагрузки. То есть, педаль акселератора находится в нулевом положении. В этом случае наблюдается минимальный расход топлива. Воздух в камеру сгорания поступает благодаря клапану холостого хода или датчику положения дроссельной заслонки.
Предельно возможные обороты ДВС обозначены на тахометре в виде красной зоны. В повседневной эксплуатации водители переходят на повышенную ступень существенно раньше, чем стрелка достигает этих отметок. Также и автоматические КПП не позволяют так сильно раскручивать мотор. Это происходит по причине того, что работа на пределе своих возможностей негативным образом сказывается на ресурсе компонентов силовой установки.
Для повышения оборотов ДВС необходимо увеличение объема топливно-воздушной смеси. То есть, когда водитель нажимает на педаль акселератора, в камере сгорания растет количество воздуха. Система, отслеживающая это по датчику массового расхода воздуха, дает сигнал форсункам увеличить подачу топлива. Следовательно, в этой связи растет расход горючего.
Чтобы избегать повышенных оборотов ДВС следует:
- Отказаться от агрессивной манеры езды
- Своевременно переключать передачи
- Правильно выбирать передачи
- Отказаться от спортивного режима АКПП (если он предусмотрен)
- Избегать пробуксовок
В то же время не следует всегда ездить на низких оборотах ДВС. Это может стать причиной образования нагара на элементах ГРМ и поршневой группы. Кратковременное и редкое увеличение оборотов силовой установке практически не сказывается на расходе.
Обращайтесь в «Кволити Моторс» для ТО и ремонта любой сложности по выгодным ценам. Рассчитайте стоимость на нашем сайте.
Больше о нас и нашей работе в нашем Instagram и на YouTube-канале.
Какие обороты двигателя убьют его быстрее всего
Вопрос о том, какие обороты двигателя предпочтительнее поддерживать для увеличения его ресурса — один из достаточно часто обсуждаемых и соответственно — спорных. Водители подчас высказывают диаметрально противоположные мнения, а истина, как водится, находится где-то посередине.
Разберем сначала вопрос о регулярной езде на высоких оборотах, когда стрелку тахометра то и дело загоняют к его красной зоне.
Сторонники такого подхода аргументируют данную манеру езды тем, что дают таким образом мотору «прочихаться». В результате, если есть проблема «плавающих» оборотов на холостом ходу, то она может уйти, свечи очищаются от нагара, становится проще запускать двигатель в мороз и даже снижается расход топлива.
Многое из сказанного действительно верно. Мы добавим к этим аргументам еще и то, что длительная, около часа, езда на высоких оборотах помогает избавиться от конденсированной влаги в картере двигателя, которая, как известно, смешивается с моторным маслом и ухудшает смазочные свойства последнего. После часовой «прожарки» — езде на высоких оборотах — влага выпаривается из лубриканта и смазочные процессы заметно улучшаются.
Теперь вопрос — в каких режимах следует гонять мотор на высоких оборотах, чтобы не спровоцировать технические проблемы. Во-первых, точно не следует делать это на запаркованной машине и во время остановок. Как минимум «лечебного» эффекта не произойдет, поскольку нагрузка на элементы мотора и трансмиссии по факту будет не велика. Вместо этого нужно дождаться теплой и сухой погоды, выехать на шоссе, разогнать автомобиль примерно до 100 км/ч, включить пониженную передачу (например, третью) и поддерживать обороты чуть выше 5000 в минуту от получаса до часа.
Как часто следует производить такую прожарку? Эксперты рекомендуют делать это примерно каждые 5 тыс. километров пробега, особенно если автомобиль и его расходники (прежде всего свечи) уже не новые и пробег составил больше 30 000 км.
А вот выполнять «прожарку» на регулярной основе (например, каждую неделю) не рекомендуется. Дело в том, при постоянной езде на высоких оборотах серьезно возрастают нагрузки на двигатель, коробку передач, шасси и прочие элементы автомобиля. В частности, у мотора почти наверняка увеличится расход масла на угар. А если в радиатор залит не новый или не очень качественный антифриз, а соты радиатора забиты, то двигатель может и вовсе закипеть. Более того, увеличение температурного режима из-за работы на высоких оборотах в ряде случаев (например, когда имеются неполадки в системе охлаждения) может даже спровоцировать пожар.
В то же время существуют и такие водители, которые ездят исключительно на низких оборотах, считая, что таким образом они берегут мотор и добиваются максимальной экономии топлива. Речь идет о манере езды «внатяг», когда автомобиль двигается на более высокой передаче, чем требует дорожная ситуация.
К сожалению, такая практика не менее вредна для силового агрегата, чем его постоянная раскрута до отсечки. В таком случае в двигателе нередко возникают ощутимые вибрации — следствие детонации, которая разрушает подшипники и валы двигателя, элементы коробки передач и сцепления. Повышенному износу подвергаются также поршни, вкладыши коленвала, растягивается цепь ГРМ, а в камерах сгорания стремительно образуется нагар.
Кроме того, у двигателя, работающего на малых оборотах, существенно снижается давление в системе смазки, что грозит протиранием антифрикционного слоя на вкладышах коленвала и на поршнях. Если вовремя не остановиться в своей «экономии», поршни со временем начнут буквально болтаться в цилиндрах, что приблизит капитальный ремонт двигателя.
Кроме того, практикуя езду на пониженных оборотах, вы тем самым способствуете недозарядке аккумулятора. Страдает также и механическая коробка передач, где смазка шестерен происходит разбрызгиванием. В трансмиссии наступает масляное голодание, что ведет к повреждениям подшипники валов. И, наконец, регулярная езда на низких оборотах приводит к тому, что двигатель закоксовывается — забивается отложениями и в итоге теряет в тяге.
Отсюда вывод: выбирайте «золотую середину» и старайтесь поддерживать средние обороты двигателя, что для большинства автомобилей — в районе 2,5 — 4 тыс. оборотов в минуту и при этом время от времени практикуйте «прожарку»: выжигайте нагар в камерах сгорания, катализаторе и на свечах, выезжая на трассу и повышая обороты как минимум на полчаса-час примерно до 5 тыс. Такая практика продлит жизнь силовому агрегату, системе выпуска и трансмиссии.
График мощности и крутящего момента
График мощности и крутящего момента — о чем он говорит?
Пример графика мощности и крутящего момента, полученный со стенда для испытания двигателей PowerTest.
Начнем с определений:
МОЩНОСТЬ (POWER, HORSEPOWER) — это работа, проделанная за единицу времени. Речь идет в данном случае о механической мощности, которая при вращении вала вокруг своей оси описывается выражением:
- ω — угловая скорость вращения вала
- M — крутящий момент
- π — число ~ 3.1416
- n — частота вращения, измеряемая в оборотах в единицу времени (в данном случае одна минута).
Важно отметить что мощность в этой формуле получается в ваттах, для получения результата в лошадиных силах мощность в кВт необходимо умножить на коэффициент 0,735499.
КРУТЯЩИЙ МОМЕНТ (TORQUE) — это произведение силы в Н, которая приложена к валу не напрямую, а через рычаг (плечо) длиной 1 м, прикрепленный к валу (точка измерения крутящего момента), отсюда и единица измерения Н*м. При такой нагрузке происходит деформация вала ,только не изгиб, который был бы при нулевой длине плеча, а скручивание, при котором отдельные сечения вала не повторяют друг друга, а оказываются повернутыми друг относительно друга на определённые углы, тем большие, чем больше приложенная сила, или чем больше рычаг при одной и той же силе. По этой причине момент называют крутящим. Не следует ожидать, что вы увидите эту закрутку стального вала диаметром, например, 20 мм, нанеся перед нагрузкой на поверхность вала линии, параллельные его оси. Величина закрутки будет в реальности настолько мала, что её непросто измерить даже с помощью специальных приборов, измерителей крутящего момента.
ОБОРОТЫ (RPM — Revolutions Per Minute) — здесь все еще проще, это число оборотов, которое совершает ВАЛ за одну минуту. Измеряется в об/мин.
Часто кажется, что люди не вполне понимают разницу между МОЩНОСТЬЮ и МОМЕНТОМ, тем более, последние связаны друг с другом через еще один ключевой параметр, как на стенде испытаний двигателя, так и в условиях реальной эксплуатации. Это угловая скорость вращения вала.
Например к нам часто приходят запросы «Нам нужно измерить параметры двигателя мощностью 200л.с.» или «какой гидротормоз вы посоветуете на 140 кВт?»
Ответить на этот вопрос можно, но это не гарантирует что заказчик получит желаемый результат. Потому что в вопросе отсутствует информация о скоростных режимах испытываемого на стенде двигателя.
И вопрос обычно задается так, как будто мощность и крутящий момент понятия если не взаимоисключающие, то по меньшей мере не связанные друг с другом.
- МОЩНОСТЬ (скорость выполнения РАБОТЫ) зависит от МОМЕНТА и СКОРОСТИ ВАЛА(ОБОРОТОВ В МИНУТУ).
- МОМЕНТ и ОБОРОТЫ В МИНУТУ — ИЗМЕРЕННЫЕ параметры, однозначно определяющие мощность двигателя.
- Мощность рассчитывается из крутящего момента и оборотов, по следующей формуле:
- МОЩНОСТЬ в Л.с. = КРУТЯЩИЙ МОМЕНТ х ОБОРОТЫ ÷ 5252
Почему это важно?
При выборе нагружающего устройства это критически важно, так как одну и ту же мощность двигатель может выдавать на стенде как при 1500 об/мин (дизельный двигатель), так и на 20 000 об/мин (двигатель гоночного мотоцикла). Для каждого типа двигателя необходимо подбирать соответствующее нагружающее устройство. А иногда даже не одно, а тандем из двух, первое из которых работает при низких оборотах, а второе при высоких. Если речь идет об испытаниях вновь создаваемых двигателей с широким скоростным диапазоном вращения вала.
Дизельный двигатель и двигатель гоночного мотоцикла.
Двигатель внутреннего сгорания (ДВС) превращает энергию, выделившуюся при сгорании топлива в работу движения поршня, тот в свою очередь передает ее на коленчатый вал, который может создавать определенный КРУТЯЩИЙ МОМЕНТ при заданных оборотах. Величина крутящего момента, который может создать двигатель, обычно существенно зависит от оборотов.
Для разных двигателей эти параметры будут разными в зависимости от геометрических параметров КШМ (кривошипно-шатунного механизма), типа топлива, массы деталей, формы распределительных валов, системы впрыска топлива и управления зажиганием и т.д.
Для маленьких и мощных двигателей необходимо использовать высокооборотистые гидротормоза и индуктивные тормоза
Ниже представлены графики различных гидротормозов для испытания двигателей.
Кривая нагружения для высокооборотистого гидротормоза.
А для больших дизельных двигателей используются гидротормоза, выдающие максимальное тормозное усилие и мощность на низких оборотах
Кривая нагружения гидротормоза для испытания мощных дизельных двигателей.
Что это означает на практике?
Если отойти от теории, то график мощности и крутящего момента — это основные характеристики двигателя. Когда вы въезжаете на своем автомобиле в горку и пытаетесь поддерживать одну и ту же скорость, вам приходится сильнее нажимать на педаль газа. Многим при этом кажется, что мощность останется та же, т.к. скорость не меняется. Но это не так!
При движении в горку двигатель выдает большую мощность при тех же оборотах.
(при неизменной передаче). Это легко проверить, взглянув на текущий расход топлива.
Также это объясняет, зачем двигателю нужна коробка передач, ведь для эффективного разгона и преодоления подъёмов нам необходимо поддерживать обороты в диапазоне максимальной мощности двигателя.
А вот электромобили обходятся без нее. Кривая крутящего момента и мощности у электродвигателя намного более линейна, и к тому же электродвигатель выдает куда большую мощность на низких оборотах.
Зачем измерять мощность и крутящий момент?
Во-первых это необходимая процедура при разработке и сертификации любого нового двигателя.
Во-вторых эти данные помогут при дальнейшей настройке и доработке двигателя, чтобы добиться наилучших эксплуатационных характеристик.
В третьих кривая мощности и крутящего момента, если её сравнить с паспортной — это прямой показатель технического состояния любого двигателя.
Графики мощности дизельного двигателя до ремонта и после ремонта, полученные с испытательного стенда на базе гидротормоза, который можно приобрести в нашей компании.
Номинальные значения рабочей мощности и тока электродвигателей
Значения тока, приведенные ниже, относятся к стандартным трехфазным четырехполюсным асинхронным электродвигателям с КЗ ротором (1500 об/мин при 50 Гц, 1800 об/мин при 60 Гц). Данные значения представлены в качестве ориентира и могут варьироваться в зависимости от производителя электродвигателя и количества полюсов.
Мощность электродвигателя | Номинальный ток электродвигателя: стандартные значения обозначены синим цветом (в соответствии с МЭК 60947-4-1, приложение G) |
|||||||||
---|---|---|---|---|---|---|---|---|---|---|
220В | 230В | 240В | 380В | 400В | 415В | 440В | 500В | 660В | 690В | |
0,06 кВт | 0,37 | 0,35 | 0,34 | 0,21 | 0,2 | 0,19 | 0,18 | 0,16 | 0,13 | 0,12 |
0,09 кВт | 0,54 | 0,52 | 0,5 | 0,32 | 0,3 | 0,29 | 0,26 | 0,24 | 0,18 | 0,17 |
0,12 кВт | 0,73 | 0,7 | 0,67 | 0,46 | 0,44 | 0,42 | 0,39 | 0,32 | 0,24 | 0,23 |
0,18 кВт | 1 | 1 | 1 | 0,63 | 0,6 | 0,58 | 0,53 | 0,48 | 0,37 | 0,35 |
0,25 кВт | 1,6 | 1,5 | 1,4 | 0,9 | 0,85 | 0,82 | 0,74 | 0,68 | 0,51 | 0,49 |
0,37 кВт | 2 | 1,9 | 1,8 | 1,2 | 1,1 | 1,1 | 1 | 0,88 | 0,67 | 0,64 |
0,55 кВт | 2,7 | 2,6 | 2,5 | 1,6 | 1,5 | 1,4 | 1,3 | 1,2 | 0,91 | 0,87 |
0,75 кВт | 3,5 | 3,3 | 3,2 | 2 | 1,9 | 1,8 | 1,7 | 1,5 | 1,15 | 1,1 |
1,1 кВт | 4,9 | 4,7 | 4,5 | 2,8 | 2,7 | 2,6 | 2,4 | 2,2 | 1,7 | 1,6 |
1,5 кВт | 6,6 | 6,3 | 6 | 3,8 | 3,6 | 3,5 | 3,2 | 2,9 | 2,2 | 2,1 |
2,2 кВт | 8,9 | 8,5 | 8,1 | 5,2 | 4,9 | 4,7 | 4,3 | 3,9 | 2,9 | 2,8 |
3 кВт | 11,8 | 11,3 | 10,8 | 6,8 | 6,5 | 6,3 | 5,7 | 5,2 | 4 | 3,8 |
4 кВт | 15,7 | 15 | 14,4 | 8,9 | 8,5 | 8,2 | 7,4 | 6,8 | 5,1 | 4,9 |
5,5 кВт | 20,9 | 20 | 19,2 | 12,1 | 11,5 | 11,1 | 10,1 | 9,2 | 7 | 6,7 |
7,5 кВт | 28,2 | 27 | 25,9 | 16,3 | 15,5 | 14,9 | 13,6 | 12,4 | 9,3 | 8,9 |
11 кВт | 39,7 | 38 | 36,4 | 23,2 | 22 | 21,2 | 19,3 | 17,6 | 13,4 | 12,8 |
15 кВт | 53,3 | 51 | 48,9 | 30,5 | 29 | 28 | 25,4 | 23 | 17,8 | 17 |
18,5 кВт | 63,8 | 61 | 58,5 | 36,8 | 35 | 33,7 | 30,7 | 28 | 22 | 21 |
22 кВт | 75,3 | 72 | 69 | 43,2 | 41 | 39,5 | 35,9 | 33 | 25,1 | 24 |
30 кВт | 100 | 96 | 92 | 57,9 | 55 | 53 | 48,2 | 44 | 33,5 | 32 |
37 кВт | 120 | 115 | 110 | 69 | 66 | 64 | 58 | 53 | 40,8 | 39 |
45 кВт | 146 | 140 | 134 | 84 | 80 | 77 | 70 | 64 | 49,1 | 47 |
55 кВт | 177 | 169 | 162 | 102 | 97 | 93 | 85 | 78 | 59,6 | 57 |
75 кВт | 240 | 230 | 220 | 139 | 132 | 127 | 116 | 106 | 81 | 77 |
90 кВт | 291 | 278 | 266 | 168 | 160 | 154 | 140 | 128 | 97 | 93 |
110 кВт | 355 | 340 | 326 | 205 | 195 | 188 | 171 | 156 | 118 | 113 |
132 кВт | 418 | 400 | 383 | 242 | 230 | 222 | 202 | 184 | 140 | 134 |
160 кВт | 509 | 487 | 467 | 295 | 280 | 270 | 245 | 224 | 169 | 162 |
200 кВт | 637 | 609 | 584 | 368 | 350 | 337 | 307 | 280 | 212 | 203 |
250 кВт | 782 | 748 | 717 | 453 | 430 | 414 | 377 | 344 | 261 | 250 |
315 кВт | 983 | 940 | 901 | 568 | 540 | 520 | 473 | 432 | 327 | 313 |
355 кВт | 1109 | 1061 | 1017 | 642 | 610 | 588 | 535 | 488 | 370 | 354 |
400 кВт | 1255 | 1200 | 1150 | 726 | 690 | 665 | 605 | 552 | 418 | 400 |
500 кВт | 1545 | 1478 | 1416 | 895 | 850 | 819 | 745 | 680 | 515 | 493 |
560 кВт | 1727 | 1652 | 1583 | 1000 | 950 | 916 | 832 | 760 | 576 | 551 |
630 кВт | 1928 | 1844 | 1767 | 1116 | 1060 | 1022 | 929 | 848 | 643 | 615 |
710 кВт | 2164 | 2070 | 1984 | 1253 | 1190 | 1147 | 1043 | 952 | 721 | 690 |
800 кВт | 2446 | 2340 | 2243 | 1417 | 1346 | 1297 | 1179 | 1076 | 815 | 780 |
900 кВт | 2760 | 2640 | 2530 | 1598 | 1518 | 1463 | 1330 | 1214 | 920 | 880 |
1000 кВт | 3042 | 2910 | 2789 | 1761 | 1673 | 1613 | 1466 | 1339 | 1014 | 970 |