Электрический диполь
Сначала возьмем два точечных заряда +q и –q, разделенных промежутком d. Проведем ось z через заряды, а начало координат поместим посредине между ними (фиг. 6.1). Тогда по формуле (4.24) потенциал системы двух зарядов дается выражением
Мы не собираемся выписывать формулу для электрического поля, но всегда при желании можем это сделать, раз мы знаем потенциал. Так что задача двух зарядов решена.
Существует важный частный случай этой задачи, когда заряды расположены близко друг к другу, иными словами, когда нас интересует поле на таких расстояниях от зарядов, что по сравнению с ними промежуток между зарядами кажется незначительным. Такую тесную пару зарядов называют диполем. Диполи встречаются очень часто.
«Дипольную» антенну можно часто приближенно рассматривать как два заряда, разделенные небольшим расстоянием (если нас не интересует поле у самой антенны). (Обычно интерес представляют антенны с движущимися зарядами; уравнения статики тогда неприменимы, но для некоторых целей они все же представляют весьма сносное приближение.)
Важнее, пожалуй, диполи атомные. Если в каком-то веществе есть электрическое поле, то электроны и протоны испытывают влияние противоположных сил и смещаются друг относительно друга. Выпомните,что в проводнике некоторые электроны сдвигаются к поверхности, так что внутреннее поле обращается в нуль. В изоляторе электроны не могут сильно разойтись; им мешает притяжение ядра. И все же они как-то смещаются. Так что хотя атом (или молекула) и остается нейтральным, во внешнем электрическом поле все же возникает еле заметное разделение положительных и отрицательных зарядов, и атом становится микроскопическим диполем. Если нам нужно знать поле этих атомных диполей поблизости от предмета обычных размеров, то мы имеем дело с расстояниями, большими по сравнению с промежутками между зарядами.
В некоторых молекулах из-за самой их формы заряды несколько разделены даже в отсутствие внешних полей. В молекуле воды, например, имеется отрицательный заряд на атоме кислорода и положительный заряд на обоих атомах водорода, которые расположены несимметрично (фиг. 6.2). Хоть заряд всей молекулы равен нулю, все же имеется распределение заряда с небольшим преобладанием отрицательного заряда на одной стороне и положительного на другой. Это расположение, конечно, не такое простое, как у двух точечных зарядов, но если смотреть на него издалека, оно действует как диполь. Как мы увидим чуть позже, поле на больших расстояниях нечувствительно к мелким деталям расположения.
Взглянем теперь на поле двух зарядов противоположных знаков, расстояние d между которыми мало. Если d станет нулем, два заряда сойдутся в одном месте, два потенциала сократятся, поле исчезнет. Но если они не совсем слились, то можно получить хорошее приближение к потенциалу, разложив слагаемые в (6.8) в ряд по степеням малой величины d (по формуле бинома Ньютона). Оставляя только первые степени d, мы напишем
ДИПО́ЛЬ-ДИПО́ЛЬНОЕ ВЗАИМОДЕ́ЙСТВИЕ
ДИПО́ЛЬ-ДИПО́ЛЬНОЕ ВЗАИМОДЕ́ЙСТВИЕ, взаимодействие частиц (или многочастичных систем), каждая из которых обладает дипольным моментом . Если два электрич. диполя с дипольными моментами $\boldsymbol$ и $\boldsymbol $ расположены на расстоянии $r$ друг от друга, то напряжённость $\boldsymbol E$ электрич. поля, создаваемого первым диполем в точке, где находится второй диполь, равна $$\boldsymbol E=\frac.$$ При этом со стороны поля $\boldsymbol E$ на диполь действует не только сила, но также момент силы, стремящийся изменить направление дипольного момента. Энергия $W$ взаимодействия двух диполей с моментами $\boldsymbol p_1$ и $\boldsymbol p_2$ равна $$W=\frac<(\boldsymbol p_1 \boldsymbol p_2)r^2-3(\boldsymbol P_1 \boldsymbol r)(\boldsymbol p_2 \boldsymbol r)>.$$ Эта величина зависит от взаимного расположения дипольных моментов. Напр., если дипольные моменты $\boldsymbol p_1$ и $\boldsymbol p_2$ и вектор $\boldsymbol r$ лежат на одной прямой, то энергия взаимодействия минимальна в случае, когда дипольные моменты параллельны. Если же дипольные моменты перпендикулярны вектору $\boldsymbol r$ , то минимальная энергия взаимодействия соответствует антипараллельному расположению дипольных моментов.
Диполь (электродинамика)
Магнитное поле Земли примерно совпадает с полем диполя. Однако «N» и «S» (северный и южный) полюса отмечены «географически», то есть противоположно принятому обозначению для полюсов магнитного диполя.
У этого термина существуют и другие значения, см. Диполь.
Дипо́ль — идеализированная система, служащая для приближённого описания поля, создаваемого вообще говоря более сложными системами зарядов, а также для приближенного описания действия внешнего поля на такие системы. Дипольное приближение, выполнение которого обычно подразумевается, когда говорится о поле диполя, основано на разложении потенциалов поля в ряд по степеням радиус-вектора, характеризующего положение зарядов-источников, и отбрасывании всех членов выше первого порядка [1] . Полученные функции будут эффективно описывать поле в случае, если:
- размеры излучающей поле системы малы по сравнению с рассматриваемыми расстояниями, так что отношение характерного размера системы к длине радиус-вектора является малой величиной и имеет смысл рассмотрение лишь первых членов разложения потенциалов в ряд;
- член первого порядка в разложении не равен 0, в противном случае нужно использовать приближение более высокой мультипольности;
- в уравнениях рассматриваются градиенты потенциалов не выше первого порядка.
Типичный пример диполя — два заряда, равных по величине и противоположных по знаку, находящихся друг от друга на расстоянии, очень малом по сравнению с расстоянием до точки наблюдения. Поле такой системы полностью описывается дипольным приближением.
Дипольный момент системы
Эквипотенциальные поверхности электрического диполя
Электрический диполь
Силовые линии электрического диполя
Электрический диполь — идеализированная электронейтральная система, состоящая из точечных и равных по абсолютной величине положительного и отрицательного электрических зарядов.
Другими словами, электрический диполь представляет собой совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся на некотором расстоянии друг от друга
Произведение вектора проведённого от отрицательного заряда к положительному, на абсолютную величину зарядов называется дипольным моментом:
Во внешнем электрическом поле на электрический диполь действует момент сил