По какой формуле вычисляют резонансную частоту
Страница, которую вы запрашиваете, не существует. Возможно, она была удалена, или был введен неверный адрес. Попробуйте вернуться на главную страницу или воспользуйтесь навигацией.
Меню
Продукция
- Шаговые двигатели
- Блоки управления шаговыми двигателями
- Программируемые устройства
для управления электроприводами
- Бесколлекторные двигатели
и мотор‑редукторы - Блоки управления бесколлекторными двигателями
- Асинхронные мотор‑редукторы
- Коллекторные двигатели
и мотор‑редукторы - Блоки управления коллекторными двигателями
- Сервоприводы
- HMI панели
- Прецизионные редукторы
- Линейные модули
- Соединительные муфты
- Источники питания
Контакты
по России звонок бесплатный
Подписка
Подпишитесь на наши новости
Получайте первыми актуальную информацию НПО «Электропривод»
©2002 — 2024 «Электропривод»
Контакты
Социальные сети
- YouTube
- Vkontakte
МОСКВА
Закрыть окно
Сайт использует файлы cookie. Находясь на сайте, Вы принимаете политику конфиденциальности и соглашаетесь на использование cookie.
Резонансная частота: формула
Галилео Галилей, исследуя маятники и музыкальные струны, описал явление, которое впоследствии стали называть резонансом. Оно проявляется не только в акустике, но и в механике, электронике, оптике и астрофизике. Резонансный эффект имеет как положительные, так и отрицательные воздействия на колебательные системы.
Эффект резонанса
Ярким примером механического класса резонаторов является пружинный маятник. Профессор из технологического Массачусетского института (в Америке), В. Левин, акцентирует внимание своих студентов на то, что резонанс (resonance) – это эффект, сопряжённый с увеличением амплитуды. Для демонстрации явления используется установка. Она состоит из следующих компонентов:
- электродвигатель;
- механизм, превращающий вращение в возвратно-поступательное движение;
- ЛАТР – лабораторный автотрансформатор;
- медная пружина из проволоки с набором грузиков;
- направляющая для пружины.
Направление колебания пружины – вертикальное. Вращение вала мотора заставляет пружину совершать колебания. С помощью автотрансформатора присутствует возможность регулировать напряжение. Регулировка позволяет варьировать частоту вращения вала и колебаний маятника. При изменении частоты вращения вала амплитуда возвратно-поступательного движения остаётся неизменной.
Перед опытом замеряется удлинение медной пружины под действием грузиков (для оценки резонансной частоты пружины). Изменение скорости вращения вала заставляет амплитуду колебания конца пружины с грузом изменяться. Амплитуда увеличивается и на 1-м герце частоты становится максимальной (~30 см).
Важно! При дальнейшем увеличении скорости вращения вала амплитуда конца пружины начинает уменьшаться. Это означает, что resonance пройден. Если уменьшать напряжение, а с ним и частоту вращения двигателя, снова можно наблюдать эффект resonance колебания пружины.
Добротность пружины Q определяется как отношение амплитуды колебания пружины Aпр к амплитуде колебания вынуждающей силы Aвс. В этом случае Q = Aпр/Aвс = 30/5 = 6, где Aвс = 5.
Определение колебательного контура
Резонансные явления, отмеченные в электротехнике, ярко выражены в схемах колебательных контуров (КК). Подобные конструкции представляют собой элементарные системы, способные осуществлять свободные колебания электромагнитной природы. Сам КК в цепи состоит из следующих элементов:
- конденсатора;
- катушки индуктивности;
- источника тока.
Внимание! Выводы элементов схемы могут соединяться друг с другом параллельно или последовательно. Все зависит от того, какого результата нужно добиться от резонанса в КК.
Подключение к цепи индуктивной катушки
Включение в ёмкостную цепь катушки индуктивности сразу превращает её в КК. В зависимости от схемы подключения, различают два вида КК 1 класса: параллельный и последовательный.
Параллельный КК
В данной схеме конденсатор С соединён с катушкой L параллельно. Если заряженный конденсатор присоединить к катушке, то энергия, запасённая в нём, передастся ей. Через индуктивную катушку L потечёт ток, вызывая электродвижущую силу (ЭДС).
ЭДС самоиндукции L будет направлена на снижение тока в параллельной цепи. Ток, созданный этой ЭДС, и ток разряда ёмкости сначала одинаковы, а их суммарное значение равно нулю. Конденсатор передаст свою энергию Ec в катушку и полностью разрядится. Индуктивность, получив максимальную магнитную энергию EL, начнёт заряжать ёмкость напряжением уже другой полярности. Когда вся энергия из индуктивности перейдёт в ёмкость, конденсатор будет полностью заряжен. В цепи появляются колебания, такой контур называется колебательным.
К сведению. Если бы в такой цепи отсутствовали потери, то такие колебания никогда не стали затухать. На практике, продолжительность процесса зависит от потери энергии. Чем больше потери, тем меньше длительность колебаний.
Параллельное соединение C и L вызывает резонанс токов. Это значит, что токи, проходящие через C и L, выше по значению, чем ток через сам контур, в конкретное число раз. Это число носит название добротности Q. Оба тока (емкостной и индуктивный) остаются внутри цепи, потому что они находятся в противофазе, и происходит их обоюдная компенсация.
Стоит отметить! На fрез величина R КК устремляется к бесконечности.
Последовательный КК
В этой схеме соединены последовательно друг с другом катушка и конденсатор.
В такой схеме происходит resonance напряжений, R контура устремляется к нулю в случае образования резонансной частоты (fрез). Это позволяет использовать подобную систему резонанса в качестве фильтра.
Резонансная частота
При подаче на два КК (параллельного и последовательного) переменного напряжения с изменяющейся частотой их реактивные сопротивления C и L будут меняться. Изменения происходят следующим образом:
- с увеличением f – ёмкостное сопротивление уменьшается, а индуктивное увеличивается;
- с уменьшением f – ёмкостное сопротивление увеличивается, а индуктивное уменьшается.
Частота, при которой реактивные сопротивления обоих элементов контура равны, называется резонансной.
Важно! При fрез сопротивление параллельного КК будет максимальным, а последовательного КК – минимальным.
Резонансная частота формула, которой имеет вид:
где:
- L – индуктивность, Гн;
- C – ёмкость, Ф.
Подставляя известные значения ёмкости и индуктивности в формулу резонансной частоты колебательного контура любой конфигурации, можно рассчитать этот параметр.
Для определения периода колебаний КК и частоты резонанса можно воспользоваться онлайн калькулятором на соответствующем портале в сети. Профессиональная программа имеет несложный интерфейс.
Пример интерфейса онлайн калькулятора LC-контура
Применение колебательных контуров
Подробный расчет колебательного контура позволяет точно подбирать величину необходимых элементов КК. Это позволяет использовать их в схемах электроники в виде:
- частотных фильтров – в радиоприёмниках, генераторах сигналов, преобразователях и выпрямителях;
- колебательных контуров – для выделения и настройки на определённую частоту станции вещания;
- силовых resonance-фильтров – для формирования напряжения синусоидальной формы.
На самолётах гражданской авиации КК применяется в блоках регулировки частоты генераторов.
Условие отсутствия резонанса
Для того чтобы возник резонанс формула которого для тока равна ω0*C = 1/ ω0*L, необходимо выполнения этого равенства. Существуют условия для невозможности появления этого эффекта, а именно:
- отсутствие у системы собственных колебаний;
- невозможность совпадения частоты внешнего воздействия с собственной частотой системы.
Амплитуда резонанса
В КК при подаче переменного напряжения от внешнего источника наблюдаются два вида резонанса и резкое увеличение двух видов амплитуды: амплитуды тока и амплитуды напряжения.
Амплитуда тока
Амплитуда тока резко возрастает при резонансе напряжений в последовательном контуре (последовательный резонанс). Источник переменной ЭДС включён в цепь, где нагрузкой служат последовательно включённые элементы L и С.
В этом случае в цепь входят сопротивления: активное r и реактивное x, равное:
Так как для внутренних колебаний xL и xC равны, то для тока, поступающего от генератора, при резонансе (когда частоты совпадают) эти значения тоже одинаковы. Поэтому x = 0. В итоге полное сопротивление цепи будет состоять только из небольшого активного сопротивления. Ток при этом получается максимальным.
Схема (а) и резонансные кривые (б) для резонанса напряжений
Амплитуда напряжения
Резонанс токов (параллельный резонанс) является условием резкого возрастания амплитуды напряжения. Источник ЭДС подключается вне контура и нагружен параллельно соединёнными элементами L и С. В этом случае на эффект резонанса влияет внутреннее сопротивление генератора. Амплитуда напряжения на контуре максимальна при малом отличии напряжения контура от напряжения генератора. Это возможно при малом Ri.
Внимание! Изменение частоты генератора меняет ток, а амплитуда напряжения на контуре не отстаёт по величине от напряжения на генераторе. Если, U = Е — I*Ri, где Е – ЭДС, I – ток, то при малом Ri U = Е.
Схема (а) и резонансные кривые (б) для резонанса токов
Формула для определения расчётной резонансной частоты для разных колебательных систем различается по входящим в неё параметрам. Несмотря на все различия, суть остаётся неизменной: эффект резонанса наступает тогда, когда частота внутренних колебаний системы и внешних воздействий становятся равны друг другу.
Электротехника
Параллельный колебательный контур (рисунок 1) или последовательный колебательный контур (рисунок 2) могут использоваться в генераторах синусоидальных колебаний. Если в одной из этих схем зарядить конденсатор то он будет разряжаться заряжая катушку индуктивности, катушка разряжаясь будет заряжать конденсатор, этот процесс будет повторяться с определённым периодом T. Период это время одного колебания. Частота колебаний это величина обратная периоду. Разделив единицу на численное значение периода получим численное значение частоты.
Рисунок 1 — Параллельный колебательный контур
Рисунок 2 — Последовательный колебательный контур
Частота возникших колебаний называется собственной частотой колебаний контура для контуров изображённых на рисунках выше эта частота равна резонансной частоте этих контуров. Резонансная частота контура зависит от индуктивности L и ёмкости C её элементов, для колебательного контура (последовательного или параллельного) её можно найти по формуле:
Где L-индуктивность катушки контура, C-ёмкость конденсатора контура.
Если на п араллельный или последовательный колебательный контур подавать переменное синусоидальное напряжение и изменять его частоту то будут меняться реактивные сопротивления элементов контура, если частота увеличивается то сопротивление конденсатора уменьшается а сопротивление катушки увеличивается и наоборот: если частота уменьшается то сопротивление конденсатора увеличивается а сопротивление катушки уменьшается, очевидно что есть такая частота при которой сопротивление катушки и конденсатора равны эта частота и есть резонансная. Сопротивление параллельного колебательного контура при этой частоте будет наибольшим (по сравнению с сопротивлениями этого контура при других частотах) а сопротивление п оследовательного колебательного контура при такой частоте будет наименьшим. Эти свойства контуров используют для построения фильтров например в полосно-пропускающем фильтре последовательно с нагрузкой ставиться последовательный контур и при подаче на это соединение (нагрузки и контура) переменного напряжения с резонансной частотой ток в нагрузке будет максимальным при других частотах ток будет меньше. Резонанс в параллельном контуре называют — резонансом токов, резонанс в последовательном контуре — резонансом напряжений. Можно простым способом определить каким будет сопротивление контура при резонансной частоте: например допустим что на параллельный колебательный контур подаётся постоянный ток, постоянный ток можно считать частным случаем переменного короче говоря постоянный ток это переменный с наименьшей возможной частотой, известно что при постоянном токе катушка действует как перемычка следовательно сопротивление контура будет равно нулю если резонансная частота не бесконечно мала (т.е. не постоянный ток) и сопротивление есть то оно больше нуля (т.е. сопротивления при постоянном токе) следовательно сопротивление параллельного колебательного контура на резонансной частоте максимальное а у последовательного контура наоборот. Зная то что конденсатор постоянный ток не пропускает, можно аналогично определить каким д.б. сопротивление последовательного контура на резонансной частоте. Выведем формулу для расчёта резонансной частоты зная то что при резонансе реактивные сопротивления элементов (катушки и конденсатора) контура равны:
Для расчёта резонансной частоты и периода колебаний колебательного контура с катушкой и конденсатором можно воспользоваться программой:
По какой формуле вычисляют резонансную частоту
Колебательный контур является типичным представителем резонансных колебательных систем, играющих важную роль в большинстве разделов физики — в механике это различного типа маятники и звуковые резонаторы (струны, мембраны, трубы, свистки, органы), в электродинамике — колебательные контуры, закрытые и открытые резонаторы с распределенными параметрами, в оптике — лазерные резонаторы, эталоны Фабри — Перо и т.д. Принципы описания всех колебательных систем настолько общи, что теория колебаний стала самостоятельным разделом физики. Поэтому изучение параметров, свойств и характеристик колебательного контура полезно рассматривать как общее введение в мир резонансных колебательных систем.
В теории колебаний выделяются два класса явлений — явления в линейных и нелинейных колебательных системах. Линейными называются такие системы, параметры которых не зависят от амплитуды колебаний. Например, для маятников это означает такие малые колебания, при которых упругость пружин и стержней не зависит от амплитуды колебания, а натяжение нити подвеса определяется только гравитационными силами. Для электрических колебательных контуров независимыми от амплитуды токов и напряжений должны оставаться такие величины, как индуктивность $L$, емкость $C$ и сопротивление $R$.
Резонансные системы имеют два важных свойства.
Свойство избирательно реагировать на внешние источники сигналов, выделяя только те из них, частоты которых совпадают с собственной частотой колебательной системы.
Свойство запасать энергию колебаний, возбужденных внешним источником, поддерживая колебания в течение определенного времени после выключения внешнего источника.
Колебательный контур характеризуется двумя основными параметрами: частотой собственных (резонансных) колебаний $\omega _ $ и добротностью $Q$, характеризующей отношение мощности энергии собственного колебания к мощности потерь за период.
На рис. 18 приведены примеры «параллелей» электрических и механических колебательных систем. В электрических резонаторах происходит периодический переход электрической энергии, запасенной в конденсаторе $(W_Э =\frac 12 CU^2),$ в магнитную энергию катушки индуктивности $(W_M =\frac 12 LI^2)$ и обратно. В маятниках происходит аналогичный циклический переход энергии из потенциальной (поднятого груза или сжатой пружины) в кинетическую и обратно.
Свободные колебания происходят в замкнутой цепи без вынуждающей силы (рис. 19,а). Согласно второму закону Кирхгофа для такой цепи можно написать: $$ R\cdot I+U_ =-L\cdot \frac. $$ Выражая $U_ $ через заряд $q$, получим уравнение
$$ R\cdot I+L\cdot \frac +\frac =0 \ \ \ \mbox < (СИ). >$$ Дифференцируя по времени и учитывая равенство $I=\frac $, получаем $$ L\frac I> > +R\frac +\frac =0 \ \ \ \mbox < (СИ). >$$ Разделив на $L$ и вводя обозначения $\delta =\frac $ и $\omega _^ =\frac $, получим общее уравнение для свободных колебаний линейной резонансной системы: $$ I»+2\delta \, I’+\omega _^ I=0, $$ где параметр $\delta $ называется затухание, а параметр $\omega _ $ — собственная частота, или частота свободных колебаний. Оно решается подстановкой $I=A\cdot e^ $, которая приводит к характеристическому уравнению $$ -\omega ^ +2i\omega \, \delta +\omega _^ =0, $$ с решением $$ \lambda \, _ =i\, \delta \pm \sqrt<\omega _^ -\delta ^ > . $$ Общее решение имеет две составляющие $$ I=A\cdot e^ +B\cdot e^ . $$ Константы $A$ и $B$ определяются начальными данными задачи, например, зарядом $q_ $ или напряжением на конденсаторе $U_ $. Характер начальных данных определяется конкретной физической системой.
Частный пример схемы для возбуждения свободных колебаний в колебательном контуре приведен на рис. 19,б. Конденсатор $C$ заряжается от батареи до напряжения $U_ $ (положение «а» переключателя), а затем переключается в точку «б». Свободные колебания будут представлять собой циклический переход энергии электрического поля (в конденсаторе) в энергию магнитного поля (в индуктивности) и обратно.
Подставив найденные значения $A$ и $B$, получим общее решение для свободных колебаний в контуре $$ I=i\frac >
Если бы колебательный контур состоял только из идеальных (без потерь) реактивных элементов (индуктивности $L$ и емкости $C$), то переход энергии из электрической в магнитную и обратно совершался бы без потерь, а в контуре существовали бы незатухающие свободные колебания с собственной частотой $\omega _ =2\pi \, f=\sqrt>.$
Наличие в схеме активного элемента $R$ приводит к тому, что часть энергии за каждый период переходит в тепло и колебания затухают с некоторой постоянной времени $\tau $. Роль частоты в уравнении теперь играет величина $\omega _
=\sqrt<\omega _<0>^ -\delta ^ > $, зависящая от отношения реактивной мощности к потерям на активном сопротивлении $R$. При этом вовсе не обязательно в схему должен быть включен отдельный резистор. В его качестве может выступать, например, омическое сопротивление провода, которым намотана катушка индуктивности, а также сопротивление утечки изоляторов конденсатора. Кроме того, часть энергии колебаний может излучаться контуром в окружающее пространство в виде электромагнитной волны. На этом основано действие так называемых связанных контуров: если вблизи данного колебательного контура расположен другой, то в нем «наводятся» (возникают) колебания за счет того, что часть энергии трансформируется из первого контура во второй. Передача энергии совершается переменным электромагнитным полем, возникающим вокруг первого контура.
Если затухание мало, т. е. $\delta <\omega _$, то мы получаем уравнение слабо затухающих колебаний в виде $$ I=-\frac >
t=-I_ e^ \sin \omega _
t. $$ При этом резонансная частота приближается к частоте собственных колебаний: $$ \omega _
=\sqrt<\omega _^ -\delta ^ > \approx \omega _ \left(1-\frac \frac <\delta ^><\omega _^ > \right). $$ Таким образом, при малом затухании резонансная частота практически совпадает с собственной, однако колебания при этом не являются гармоническими. Для гармонических колебаний должно соблюдаться условие $I\left(t\right)=I\left(t+T\right)$, где $T$ — период колебания. В нашем случае $I\left(t\right)\ne I\left(t+T\right)$, и о периоде можно говорить лишь как о времени, через которое повторяются нули функции (рис. 20). Именно в этом смысле мы будем ниже использовать термин «период колебаний».
Введем понятия добротности $Q$ и логарифмического декремента затухания $\gamma $ контура. Из отношение амплитуд $n$–того и $(n + k)$–го колебаний равно $I_ I_^ = e^$, где $T=2\, \pi \omega ^ $ — период колебания («повторения нулей»). Логарифмическим декрементом затухания $\gamma $ называется величина $$ \gamma =\delta \, T=\frac \ln \frac
Добротность контура $Q$ определяется соотношением $$ Q=\frac <\omega _<0>L> =\frac <\omega _<0>CR> =\frac, $$ где $\rho =\sqrt $ (СИ). Физический смысл добротности заключается в отношении запасенной в контуре энергии к энергии потерь за период колебания $$ Q=\omega \cdot \frac, $$ откуда можно найти связь добротности с другими параметрами контура $$ Q=\frac<\pi > <\gamma >=\frac<\pi > =\frac<\omega > =\omega \frac \ \ \ \mbox < (СИ).>$$
Экспериментально добротность определяется по резонансной кривой как отношение резонансной частоты $\omega _
$ к полосе частот $2\cdot \Delta \omega $, определяемой на уровне $U_ =\pm \frac>$: $$ Q=\frac<\omega _<з>> =\frac> , $$ где $U_
$ — амплитуда колебания на резонансной частоте контура. Величина $\rho =\sqrt$ называется характеристическим (волновым) сопротивлением контура.
При большом затухании, т.е. при $\delta >\omega _ $, величина $\omega _^ -\delta ^ $ отрицательна, корень из нее мнимый. Такой случай называется апериодическим процессом. Общее решение, аналогичное, полученному ранее, будет иметь вид $$ I=-\frac
Вынужденные колебания
Колебательный контур, рассмотренный в предыдущем разделе, представлял собой замкнутую электрическую цепь, в которой совершаются свободные колебания.
В случае вынужденных колебаний мы должны подводить к контуру электрическую энергию от внешнего источника (генератора). Есть много способов для подключения источника внешней энергии к контуру, которые сводятся к той или иной комбинации двух основных: в разрыв цепи контура (рис. 22, а) или параллельно емкостной и индуктивной ветвям контура (рис. 22,б). В зависимости от способа включения различают соответственно последовательный (рис. 22,а) и параллельный (рис. 22,б) колебательные контуры. Они предъявляют разные требования к согласованию с генератором и нагрузкой. Поэтому нужно отличать собственные параметры контура от параметров нагруженного контура, получаемые с учетом влияния генератора и «нагрузки» (входного сопротивления той цепи, в которую включен контур). В параллельном контуре (рис. 22,б) возникает резонанс токов. Для его поддержания в качестве вынуждающей силы необходимо применение генератора стабильного тока. В последовательном контуре (рис. 22,а) имеет место резонанс напряжений, и для его поддержания должен применяться внешний генератор стабильного напряжения.
Вынужденные колебания в последовательном контуре, резонанс напряжений
Закон Кирхгофа, позволяющий исследовать процессы в контуре (рис. 22,а) в зависимости от частоты, записывается в виде $$ U=U_ +U_ +U_ =IR+iI(\omega L-\frac <\omega C>)=I\cdot Z. $$ Контур представляет для генератора некоторое комплексное сопротивление $$ Z=R_L +i\cdot (\omega L-\frac <\omega C>), $$ $$ \left|Z\right| = \sqrt
Из последнего выражения видно, что сопротивление цепи будет минимально и равно активному сопротивлению $R_ $ на некоторой частоте $\omega _ $, определяемой условием $$ \omega _0 L=\frac <\omega _0 C>, \ \ \ \mbox < где >\ \ \ \omega _ =\frac> \ \ \ \mbox < (СИ).>$$ Таким образом, на резонансной частоте сопротивление контура минимально, чисто активно, а ток в цепи совпадает по фазе с входным напряжением (напряжением генератора). Фактически это и есть определение резонанса в последовательном колебательном контуре.
Для практических целей представляет интерес исследовать поведение напряжений на реактивных элементах контура в зависимости от частоты генератора и определить его добротность $Q$.
Поскольку фазы $U_ $ и $U_ $ независимо от частоты всегда сдвинуты относительно тока $I$ на $+$ и $-90^$ соответственно, то достаточно исследовать зависимость от частоты их модулей. Это можно сделать исходя из уравнений $$ U_ =IR, \ \ U_ =I\omega L, \ \ U_ =\frac<\omega C>, \ \ I=\frac . $$
Для примера раскроем уравнения для $I$ и $U_ $. Используя введенное для свободных колебаний понятие добротности $Q=\left(\omega _ RC\right)^$, получим следующее выражение для тока в последовательном контуре: $$ I=\frac +(\omega L-\frac <\omega C>)^ > > =\frac \frac <\sqrt<1+Q^(\frac<\omega > <\omega _> -\frac <\omega _> <\omega >)^ > > . $$ Тогда напряжение на индуктивности будет равно $$ U_ =\omega LI=U\frac <\omega _> > <\sqrt<1+Q^(\frac<\omega > <\omega _> -\frac <\omega _> <\omega >)^ > > . $$
Аналогичное уравнение можно получить для напряжения на $C$. При $\omega =\omega _ $ напряжения на $L$ и $C$ будут равны $U_ =U_ =Q\cdot U$, т.е. в $Q$ раз больше напряжения вынуждающей эдс.
На самом деле максимумы напряжения на элементах $L$ и $C$ несколько выше и смещены от резонансной частоты и выражаются следующими соотношениями: $$ \omega _
При добротности контура $Q \ge 10$ сдвиг частот максимумов $U_ $ и $U_ $ относительно резонансной частоты $\omega _ $ не превышает 1% и экспериментально резонансную частоту и добротность можно определять по резонансной кривой любого из напряжений $U_ $ и $U_ $. Напряжение на реактивных элементах $U_ $ и $U_ $ при $\omega =\omega _ $ в $Q$ раз больше, чем входное напряжение $U$, поэтому резонанс в последовательном контуре называется резонансом напряжений.
Важно отметить, что для нашего анализа существенно, что само входное напряжение $U$ от частоты не зависит. В противном случае все параметры зависели бы не только от самого контура, но и от параметров источника сигнала. Как было показано в предыдущем параграфе, для этого выходное сопротивление генератора должно быть много меньше $R$.
Вынужденные колебания в параллельном контуре, резонанс токов
Схема подключения параллельного контура представлена на рис. 21,б. Из–за комплексного характера нагрузки ток генератора является комплексной величиной. Поэтому модуль тока $I$ может оказаться меньше не только суммы модулей токов индуктивной и емкостной ветвей контура, но и каждого из них в отдельности. Именно это и происходит при резонансе в параллельном контуре: токи в индуктивной и емкостной ветвях контура в $Q$ раз больше, чем ток, потребляемый от генератора тока. Поэтому резонанс в параллельном контуре называется резонансом токов.
Комплексное сопротивление параллельного контура равно $$ Z=\frac Z_ > +Z_ > = \frac <(R_
Мы пренебрегли величиной $R_ $ в числителе, поскольку она в $Q$ раз меньше индуктивного сопротивления, но этого нельзя делать в знаменателе, поскольку при резонансе величина в скобках стремится к нулю.
Условие резонанса для параллельного контура то же, что и для последовательного — равенство реактивных сопротивлений ветвей с $L$ и $C$: $$ \omega _ L=\frac <\omega _C>, \ \ \mbox < где >\ \ \omega _ =\frac > \ \ \mbox < (СИ). >$$ Таким образом, при резонансе сопротивление контура становится чисто активным и равным $$ R_ =\frac < C R_> =\frac >
Сопротивление $R_ $ отдельного физического эквивалента в контуре не имеет, а является комбинацией волнового сопротивления $\rho $ и сопротивления потерь $R_ $. Поэтому оно не составляет отдельной ветви параллельного контура и не ответвляет в себя ток. Следовательно, «переносить» его куда–либо или к чему–нибудь «подсоединять» (например, к внутреннему сопротивлению источника тока) бессмысленно. На схеме это просто условное обозначение того факта, что на резонансной частоте параллельный колебательный контур представляет для внешнего генератора некоторое чисто активное сопротивление величиной $R_ $, а в формулах символическая запись определенной комбинации $\rho $ и $R_ $, даваемой последней формулой.
Добротность параллельного контура $$ Q=\frac <\omega _L> > =\frac \omega _ C> =\frac > =R_ \sqrt > . $$
Собственные параметры параллельного контура, т.е. резонансная частота $\omega _ $ и добротность $Q$ будут такими же, как и в последовательном контуре при тех же $C$, $L$ и $R_.$