Потенциал. Разность потенциалов. Напряжение.Эквипотенциальные поверхности
Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.
За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.
— следствие принципа суперпозиции полей (потенциалы складываютсяалгебраически).
Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.
В СИ потенциал измеряется в вольтах:
Разность потенциалов
Напряжение — разность значений потенциала в начальной и конечнойточках траектории.
Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.
Разность потенциалов (напряжение) не зависит от выбора
Единица разности потенциалов
Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.
Связь между напряженностью и напряжением.
Из доказанного выше: →
напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).
Из этого соотношения видно:
- Вектор напряженности направлен в сторону уменьшения потенциала.
- Электрическое поле существует, если существует разность потенциалов.
- Единица напряженности: — Напряженность поля равна1 В/м, если между двумя точками поля, находящимися на расстоянии 1 м друг от друга существует разность потенциалов 1 В.
Эквипотенциальные поверхности.
ЭПП — поверхности равного потенциала.
— работа при перемещении заряда вдоль эквипотенциальной поверхности не совершается;
— вектор напряженности перпендикулярен к ЭПП в каждой ее точке.
Измерение электрического напряжения (разности потенциалов)
Между стержнем и корпусом — электрическое поле. Измерение потенциала кондуктора Измерение напряжения на гальваническом элементе Электрометр дает большую точность, чем вольтметр.
Потенциальная энергия взаимодействия зарядов.
Потенциал поля точечного заряда
Потенциал заряженного шара
а) Внутри шара Е=0, следовательно, потенциалы во всех точках внутри заряженного металлического шара одинаковы (. ) и равны потенциалу на поверхности шара.
б) Снаружи поле шара убывает обратно пропорционально расстоянию от центра шара, как и в случае точечного заряда.
Перераспределение зарядов при контакте заряженных проводников.
Переход зарядов происходит до тех пор, пока потенциалы контактирующих тел не станут равными.
Потенциал электрического поля
В зависимости от количества зарядов и их величины изменяется энергия электрического поля, создаваемого этими зарядами. Очевидно, что величина энергии электрического поля, образованного одним ‘зарядом, будет отличаться от величины энергии поля, образованного двумя или тремя такими же зарядами.
В практике очень часто приходится сравнивать различные по величине поля. Это сравнение производится по действиям полей на единичный положительный заряд (так называемый пробный заряд). Поясним это.
Определение: Единичным называется заряд, величина которого равна одной единице заряда.
Пусть, например, поле образовано некоторым положительным зарядом. Чтобы внести в какую-то точку этого поля единичный положительный заряд, необходимо затратить определенную работу на преодоление силы отталкивания между основным и единичным зарядами. Величина потенциальной энергии поля при этом возрастает.
Попробуем теперь внести единичный заряд в другое поле, образованное в два раза большим электрическим зарядом. Очевидно, что при этом придется затратить большую работу, чем в первом случае. Следовательно, и потенциальная энергия поля возрастет больше, чем в первом случае.
В электротехнике для характеристики поля вводится специальное понятие — электрический потенциал.
Определение; Электрический потенциал некоторой точки поля численно равен работе, затрачиваемой при внесении единичного положительного заряда из-за пределов поля в данную точку.
Измеряется потенциал электрического поля в вольтах. Такое название единицы для измерения потенциала дано по имени итальянского физика Алессандро Вольта (1745—1827), открывшего закон взаимодействия электрических токов и предложившего первую гипотезу для объяснения магнитных свойств вещества.
Характеристика поля с помощью электрического потенциала очень удобна. Она позволяет сравнивать не только различные электрические поля, но и отдельные точки одного и того же поля. Вместо того, например, чтобы говорить «шар А наэлектризован более сильно, чем шар Б», можно сказать: «потенциал шара А выше потенциала шара Б». Потенциал точки поля обычно обозначается буквой φ.
Электрическое поле может создаваться не только положительным или отрицательным зарядом, но и их совокупностью. В таком поле отдельные точки могут иметь как отрицательные, так и положительные потенциалы. Чтобы в этом случае сравнивать потенциалы различных точек, ввели условное понятие о точке с нулевым потенциалом, т. е. стали считать, что одна из точек (или несколько точек) имеет потенциал, равный нулю. Потенциалы остальных точек поля определяются относительно точки нулевого потенциала. Этот метод аналогичен методу измерения температур. Там также определенная температура (температура тающего льда) принимается за нулевую точку и по отношению к ней определяется температура других тел.
В электротехнике условно считают, что нулевой потенциал имеет поверхность земли.
Если потенциал в данной точке выше потенциала земли, то мы говорим, что точка обладает положительным потенциалом. Если же, наоборот, потенциал точки ниже потенциала земли, то точка обладает отрицательным потенциалом.
Измеряя потенциалы различных точек электрического поля относительно земли, можно убедиться в том, что они неодинаковы. Значит, между отдельными точками может быть некоторая разность потенциалов.
Определение: Разность потенциалов между двумя точками электрического поля называется напряжением. Напряжение, так же как и потенциал, измеряется в вольтах.
Сказанное поясним примером.
На рис. 1 мы условно показали четыре точки: А—с потенциалом + 20 в, Б — с потенциалом +40 в, В — с нулевым потенциалом (земля) и Г — с потенциалом—15 в.
Рисунок 1. Разность потенциалов между различными точками электрического поля
Разность потенциалов между точками Б и А =40—20=20 в;
Разность потенциалов между точками А и В =20— 0=20 в;
Разность потенциалов между точками Б и В =40— 0=40 в;
Разность потенциалов между точками А и Г=20—(—15) =35 в.
Потенциал точки Б выше потенциалов точек А, В и Г. Потенциал точки А выше потенциалов точек В и Г, но ниже потенциала точки Б. Потенциал точки В ниже потенциалов точек А и Б, но выше потенциала точки Г.
Следует обратить внимание на то, что точки отрицательного потенциала имеют более низкий потенциал, чем тонки нулевого потенциала.
Можно и иначе определить напряжение между двумя точками. Для этого рассмотрим две точки А и Б электрического поля.
Допустим, что потенциал точки А равен φА потенциал точки Б равен φБ. Потенциал точки А (или Б) определяется той работой, которую необходимо затратить на перенос единичного положительного заряда из-за пределов поля в точку А (или Б). Если для переноса единичного положительного заряда из-за предела поля в точку А и в точку Б требуется затратить различную по величине работу, то φА не равно φБ и между точками А и Б существует некоторая разность потенциалов, или напряжение. Это напряжение определяется разностью φА — φБ т. е. работой, совершаемой силами поля при переносе единичного положительного заряда из точки А в точку Б.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Что такое потенциал электрического поля
Пусть пробный заряд `q` перемещается в электростатическом поле из точки `1` в точку `2` по некоторой траектории под действием нескольких сил (рис. 5.1). Каждая сила совершает над зарядом работу. Нас интересует работа, совершённая над зарядом силами электростатического поля. Оказывается (доказательства не приводим), – что эта работа не зависит от формы траектории. Например, работы на траекториях `1-3-2` и `1-4-2` равны. Из независимости работы от формы траектории следует равенство нулю работы по замкнутой траектории. Например, работа сил электростатического поля над перемещаемым по замкнутой траектории `BCDB` (рис. 5.1) зарядом `q` равна нулю:
A B C D B = 0 A_=0 .
Поля, для которых работа сил поля не зависит от формы траектории, называются потенциальными. В таких полях можно ввести понятие потенциальной энергии `»П»` и потенциала φ \varphi . Для электростатического поля работа сил поля над перемещаемым из точки `1` в точку `2` зарядом равна убыли (приращению с обратным знаком) потенциальной энергии заряда в поле:
A 12 = П 1 — П 2 = — ∆ П A_=<\mathrm П>_1-<\mathrm П>_2=-\triangle\mathrm П .
Потенциал данной точки поля вводится как отношение потенциальной энергии пробного заряда в поле к величине заряда: φ = П q \varphi=\dfrac<\mathrm П>q .
Потенциал
это энергетическая характеристика поля, не зависящая от величины пробного заряда. С введением потенциала для работы `A_12` можно записать:
A 12 = q ( φ 1 — φ 2 ) A_=q(\varphi_1-\varphi_2) . | (5.1) |
Разность потенциалов φ 1 — φ 2 \varphi_1-\varphi_2 (напряжение) зависит только от положения точек `1` и `2`.
Потенциальная энергия и потенциал определены с точностью до произвольной постоянной. Потенциал (и потенциальную энергию) можно отсчитывать от некоторой точки, положив в ней потенциал равным нулю. Обычно полагают равным нулю потенциал бесконечно удалённой точки поля (бесконечности) или потенциал Земли.
Перенесём мысленно пробный заряд из данной точки электростатического поля с потенциалом φ \varphi в бесконечность. Силы поля совершат над зарядом работу `A`. Согласно (5.1) A = q ( φ — φ ∞ ) . A=q(\varphi-\varphi_\infty). Если принять φ ∞ = 0 \varphi_\infty=0 , то
φ = A q \varphi=\dfrac Aq . | (5.2) |
Равенство (5.2) удобно для нахождения потенциала данной точки поля.
Из принципа суперпозиции электрических полей и (5.2) можно вывести, что потенциал поля, созданного несколькими зарядами, равен сумме потенциалов полей, созданных отдельными зарядами:
φ = φ 1 + φ 2 + . . . = ∑ i φ i \varphi=\varphi_1+\varphi_2+. =\sum_i\varphi_i .
Единицей потенциала (разности потенциалов) в системе СИ служит вольт (В):
Не следует забывать, что независимость работы сил поля над перемещаемым зарядом от формы траектории и понятие потенциала справедливы только для электростатического поля и могут не иметь места для произвольного электрического поля.
В неоднородном электростатическом поле электрону сообщили в точке `B` скорость v B = 1000 v_B= 1000 км/с. Электрон, двигаясь свободно в поле по криволинейной траектории, достиг точки `C` со скоростью v C = 2000 v_C=2000 км/с. Какую разность потенциалов φ B — φ C \varphi_B-\varphi_C прошёл электрон?
Работа сил электростатического поля над электроном равна изменению кинетической энергии электрона:
— e φ B — φ C = m v c 2 2 — m v B 2 2 \left(-e\right)\left(\varphi_B-\varphi_C\right)=\dfrac2-\frac2 .
Здесь e = 1,6 · 10 — 19 Кл e=1,6\cdot10^\;\mathrm — модуль заряда электрона, m = 9 . 1 · 10 — 31 кг m=9.1\cdot10^\mathrm — масса электрона.
Имеем: φ B — φ C = — m 2 e ( v C 2 — v B 2 ) = — 8,5 В . \varphi_B-\varphi_C=-\dfrac m(v_C^2-v_B^2)=-8,5\mathrm В.
Что такое потенциал электрического поля
Потенциальная энергия заряда в электрическом поле. Работу, совершаемую силами электрического поля при перемещении положительного точечного заряда q из положения 1 в положение 2, представим как изменение потенциальной энергии этого заряда:
,
где Wп1 и Wп2 – потенциальные энергии заряда q в положениях 1 и 2. При малом перемещении заряда q в поле, создаваемом положительным точечным зарядом Q, изменение потенциальной энергии равно
.
При конечном перемещении заряда q из положения 1 в положение 2, находящиеся на расстояниях r1 и r2 от заряда Q,
.
Если поле создано системой точечных зарядов Q1, Q2, ¼ , Q n , то изменение потенциальной энергии заряда q в этом поле:
.
Приведённые формулы позволяют найти только изменение потенциальной энергии точечного заряда q, а не саму потенциальную энергию. Для определения потенциальной энергии необходимо условиться, в какой точке поля считать ее равной нулю. Для потенциальной энергии точечного заряда q, находящегося в электрическом поле, созданном другим точечным зарядом Q, получим
,
где C – произвольная постоянная. Пусть потенциальная энергия равна нулю на бесконечно большом расстоянии от заряда Q (при r ® ¥ ), тогда постоянная C = 0 и предыдущее выражение принимает вид
.
При этом потенциальная энергия определяется как работа перемещения заряда силами поля из данной точки в бесконечно удаленную. В случае электрического поля, создаваемого системой точечных зарядов, потенциальная энергия заряда q:
.
Потенциальная энергия системы точечных зарядов. В случае электростатического поля потенциальная энергия служит мерой взаимодействия зарядов. Пусть в пространстве существует система точечных зарядов Qi ( i = 1, 2, . , n). Энергия взаимодействия всех n зарядов определится соотношением
,
где rij — расстояние между соответствующими зарядами, а суммирование производится таким образом, чтобы взаимодействие между каждой парой зарядов учитывалось один раз.
Потенциал электростатического поля. Поле консервативной силы может быть описано не только векторной функцией, но эквивалентное описание этого поля можно получить, определив в каждой его точке подходящую скалярную величину. Для электростатического поля такой величиной является потенциал электростатического поля, определяемый как отношение потенциальной энергии пробного заряда q к величине этого заряда, j = Wп / q , откуда следует, что потенциал численно равен потенциальной энергии, которой обладает в данной точке поля единичный положительный заряд. Единицей измерения потенциала служит Вольт (1 В).
Потенциал поля точечного заряда Q в однородной изотропной среде с диэлектрической проницаемостью e :
.
Принцип суперпозиции. Потенциал есть скалярная функция, для неё справедлив принцип суперпозиции. Так для потенциала поля системы точечных зарядов Q1, Q2 ¼ , Q n имеем
,
где r i — расстояние от точки поля, обладающей потенциалом j , до заряда Qi . Если заряд произвольным образом распределен в пространстве, то
,
где r — расстояние от элементарного объема d x, dy, dz до точки (x, y, z), где определяется потенциал; V — объем пространства, в котором распределен заряд.
Потенциал и работа сил электрического поля. Основываясь на определении потенциала, можно показать, что работа сил электрического поля при перемещении точечного заряда q из одной точки поля в другую равна произведению величины этого заряда на разность потенциалов в начальной и конечной точках пути, A = q ( j 1 — j 2 ) .
Если по аналогии с потенциальной энергией считать, что в точках, бесконечно удалённых от электрических зарядов — источников поля, потенциал равен нулю, то работу сил электрического поля при перемещении заряда q из точки 1 в бесконечность можно представить как A ¥ = q j 1.
Таким образом, потенциал â данной точке электростатического поля — это физическая величина, численно равная работе, совершаемой силами электрического поля при перемещении единичного положительного точечного заряда из данной точки поля в бесконечно удаленную: j = A ¥ / q .
В некоторых случаях потенциал электрического поля нагляднее определяется как физическая величина, численно равная работе внешних сил против сил электрического поля при перемещении единичного положительного точечного заряда из бесконечности в данную точку. Последнее определение удобно записать следующим образом:
.
В современной науке и технике, особенно при описании явлений, происходящих в микромире, часто используется единица работы и энергии, называемая электрон-вольтом (эВ). Это работа, совершаемая при перемещении заряда, равного заряду электрона, между двумя точками с разностью потенциалов 1 В: 1 эВ = 1,60 × 10 — 1 9 Кл × 1 В = 1,60 × 10 — 1 9 Дж.
1) Дайте определение потенциала данной точки поля и разности потенциалов двух точек поля.
2) Приведите графики зависимостей напряженности поля и потенциала от расстояния для равномерно заряженной сферической поверхности. Дайте их объяснение и обоснование.