Почему с повышением температуры сопротивление электролита уменьшается
Перейти к содержимому

Почему с повышением температуры сопротивление электролита уменьшается

  • автор:

Почему с повышением температуры сопротивление электролита уменьшается?

Нужна помощь эксперта?
Мы здесь, чтобы помочь вам!

Теоретические вопросы
Сообщений 2

Почему с повышением температуры сопротивление электролита уменьшается?

Здравствуйте. Сопротивление электролитов уменьшается при повышении температуры, потому что при нагревании увеличивается число молекул, которые распадаются на ионы (положительные и отрицательные). В следствии этого происходит увеличение числа электрически заряженных частиц в единице объема раствора электролита, что приводит к уменьшению сопротивления.

Поделиться

Согласие на обработку персональных данных

Данные, которые вы предоставляете, будут использованы Обществом с ограниченной ответственностью «Электропоставщик» (ИНН 9710008385) (далее – Оператор) для достижения следующих целей обработки персональных данных: обеспечение соблюдения требований законодательства Российской Федерации; ведение переговоров; заключение и исполнение договора; информирование о статусе заказа; осуществление доставки продукции; возврат продукции; предоставление актуальной информации по продукции, проходящим акциям и специальным предложениям; анализ качества предоставляемого Оператором сервиса и улучшению качества обслуживания клиентов Оператора.

Совокупность операций обработки включает сбор, запись, систематизацию, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передачу (предоставление, доступ), обезличивание, блокирование, удаление, уничтожение Данных.

Перечень персональных данных, на обработку которых дается согласие субъекта персональных данных, отражено в Политике в отношении обработки персональных данных Оператора.

Обработка вышеуказанных персональных данных будет осуществляться путем смешанной обработки персональных данных.

Оператор вправе поручить обработку Данных субъектов Данных третьим лицам с согласия субъекта Данных, на основании заключаемого с этими лицами договора. Лица, осуществляющие обработку Данных на основании заключаемого с Оператором договора (поручения оператора), обязуются соблюдать принципы и правила обработки и защиты Данных, предусмотренные Законом. Для каждого третьего лица в договоре определяются перечень действий (операций) с Данными, которые будут совершаться третьим лицом, осуществляющим обработку Данных, цели обработки, устанавливается обязанность такого лица соблюдать конфиденциальность и обеспечивать безопасность Данных при их обработке, указываются требования к защите обрабатываемых Данных в соответствии с Законом.

Настоящее согласие на обработку персональных данных действует с момента его представления оператору на период исполнения обязательств по Договору и может быть отозвано в любое время путем подачи оператору заявления в простой письменной форме. Сроки обработки (хранения) персональных данных определяются исходя из целей обработки персональных данных, в соответствии со сроком действия договора с субъектом персональных данных, требованиями федеральных законов, требованиями операторов персональных данных, по поручению которых Оператор осуществляет обработку персональных данных, основными правилами работы архивов организаций, сроками исковой давности.

Персональные данные субъекта подлежат хранению в течение сроков, установленных законодательством Российской Федерации.

Персональные данные субъекта подлежат хранению в течение сроков, установленных законодательством Российской Федерации. Персональные данные уничтожаются: по достижению целей обработки персональных данных; при ликвидации или реорганизации оператора; на основании письменного обращения субъекта персональных данных с требованием о прекращении обработки его персональных данных (оператор прекратит обработку таких персональных данных в течение 3 (трех) рабочих дней, о чем будет направлено письменное уведомление субъекту персональных данных в течение 10 (десяти) рабочих дней.

Согласие на получение рассылки рекламно-информационных материалов

В соответствии с Федеральным законом от 13.03.2006 № 38-ФЗ «О рекламе» и Федеральным законом от 07.07.2003 г. № 126-ФЗ «О связи», настоящим я, действуя по своей волей и в своем интересе, даю свое согласие Обществу с ограниченной ответственностью «Электропоставщик» (ИНН 9710008385) (далее – Компания) на направление мне на указанные мной на сайте https://cable.ru/ контактные данные (номер телефона и/или электронную почту) сообщений в информационных, рекламно-информационных целях об услугах (сервисах) Компании, а именно: рассылок уведомлений об изменении заказов, предложений и другой информации; новостной рассылки и иных сведений от имени Компании, в виде sms-сообщений, и/или электронных писем, и/или сообщений в мессенджерах, и/или push-уведомлений, и/или посредством телефонных звонков.

Я согласен(а) с тем, что текст данного мной по собственной воле и в моих интересах согласия хранится в электронном виде в базе данных и подтверждает факт согласия на обработку персональных данных в соответствии с вышеизложенными положениями и беру на себя ответственность за достоверность предоставления персональных данных

Я подтверждаю, что владею информацией о том, что в любой момент в течение всего срока действия настоящего согласия, я вправе отозвать согласие и отписаться от получения рассылок путем перехода по соответствующей ссылке, существующей в любом письме

Также я информирован(-а), что при возникновении вопросов относительно отказа от рассылки, я могу обратиться за помощью, отправив письмо в службу технической поддержки Компании.

Настоящее согласие предоставляется на неограниченный срок при отсутствии сведений о его отзыве.

Настоящим подтверждаю, что мои конклюдентные действия является достаточной формой согласия и позволяет подтвердить сторонам факт получения такого согласия, при этом иных доказательств для дополнительного подтверждения моего свободного волеизъявления не потребуется.

Объясните, как и почему, при росте температуры, меняется проводимость электролитов? (Ответ должен быть на 5 предложений . )

IUV

Сопротивление электролитов уменьшается при повышении температуры, потому что при нагревании увеличивается число молекул, которые распадаются на ионы (положительные и отрицательные). В следствии этого происходит увеличение числа электрически заряженных частиц в единице объема раствора электролита, что приводит к уменьшению сопротивления!

talu1

Ответ супер.

Новые вопросы в Физика

Лабораторная работа Помогите

Як змінюється вертикальна складова швидкості при русі тіла, кинутого горизонтально?​

Мідний кубик із довжиною ребра 10 см підвішено за нитку і частково занурено у воду. Яка частина кубика перебуває над водою, якщо сила натягу нитки дор … івнює 81 Н? переведите пожалуйста в CI Формулу и решение пожалуйста даю 75!

фізика хто розбирається допоможіть

фізика домоможіть будьласка

Как зависит сопротивление от температуры

В своей практической деятельности каждый электрик встречается с разными условиями прохождения носителей зарядов в металлах, полупроводниках, газах и жидкостях. На величину тока влияет электрическое сопротивление, которое различным образом изменяется под влиянием окружающей среды.

Одним из таких факторов является температурное воздействие. Поскольку оно значительно изменяет условия протекания тока, то учитывается конструкторами в производстве электрооборудования. Электротехнический персонал, участвующий в обслуживании и эксплуатации электроустановок, обязан грамотно использовать эти особенности в практической работе.

Влияние температуры на электрическое сопротивление металлов

В школьном курсе физики предлагается провести такой опыт: взять амперметр, батарейку, отрезок проволоки, соединительные провода и горелку. Вместо амперметра с батарейкой можно подключить омметр или использовать его режим в мультиметре.

Далее необходимо собрать электрическую схему, показанную на картинке и замерить величину тока в цепи. Его значение показано на шкале миллиамперметра стрелкой черного цвета.

Влияние нагрева на сопротивление проводника

Теперь поднесем пламя горелки к проволоке и станем ее нагревать. Если смотреть на амперметр, то будет видно, что стрелка станет перемещаться влево и достигнет положения, отмеченного красным цветом.

Результат опыта демонстрирует, что при нагревании металлов их проводимость уменьшается, а сопротивление возрастает.

Математическое обоснование этого явления приведено формулами прямо на картинке. В нижнем выражении хорошо видно, что электрическое сопротивление «R» металлического проводника прямо пропорционально его температуре «Т» и зависит еще от нескольких параметров.

Как нагрев металлов ограничивает электрический ток на практике

Ежедневно при включении освещения мы встречаемся с проявлением этого свойства у ламп накаливания. Проведем несложные измерения на лампочке с мощностью 60 ватт.

Лампа накаливания в нагретом и холодном состоянии

Самым простым омметром, питающемся от низковольтной батарейки 4,5 V, замерим сопротивление между контактами цоколя и увидим значение 59 Ом. Этой величиной обладает нить накала в холодном состоянии.

Вкрутим лампочку в патрон и через амперметр подключим к ней напряжение домашней сети 220 вольт. Стрелка амперметра покажет 0,273 ампера. По закону Ома для участка цепи определим сопротивление нити в нагретом состоянии. Оно составит 896 Ом и превысит предыдущее показание омметра в 15,2 раза.

Такое превышение предохраняет металл тела накала от перегорания и разрушения, обеспечивая его длительную работоспособность под напряжением.

Переходные процессы при включении

При работе нити накала на ней создается тепловой баланс между нагревом от проходящего электрического тока и отводом части тепла в окружающую среду. Но, на первоначальном этапе включения при подаче напряжения возникают переходные процессы, создающие бросок тока, который может привести к перегоранию нити.

Бросок тока при включении лампы

Переходные процессы протекают за короткое время и вызваны тем, что скорость возрастания электрического сопротивления от нагрева металла не успевает за увеличением тока. После их окончания устанавливается рабочий режим.

Во время длительного свечения лампы постепенно толщина ее нити доходит до критического состояния, которое приводит к перегоранию. Чаще всего этот момент возникает при очередном новом включении.

Для продления ресурса лампы различными способами уменьшают этот бросок тока, используя:

1. устройства, обеспечивающие плавную подачу и снятие напряжения;

2. схемы последовательного подключения к нити накала резисторов, полупроводников или терморезисторов (термисторов).

Пример одного из способов ограничения пускового тока для автомобильных светильников показан на картинке ниже.

Схема включения автомобильной лампы

Здесь ток на лампочку подается после включения тумблера SA через предохранитель FU и ограничивается резистором R, у которого номинал подбирается так, чтобы бросок тока во время переходных процессов не превышал номинальное значение.

При нагреве нити накала ее сопротивление возрастает, что ведет к увеличению разности потенциалов на ее контактах и параллельно подключенной обмотке реле KL1. Когда напряжение достигнет величины уставки реле, то нормально открытый контакт KL1 замкнется и зашунтирует резистор. Через лампочку начнет протекать рабочий ток уже установившегося режима.

Влияние температуры металла на его электрическое сопротивление используется в работе измерительных приборов. Их называют термометрами сопротивления.

Термометр сопротивления

Их чувствительный элемент выполняют тонкой проволочкой из металла, сопротивление которой тщательно замерено при определенных температурах. Эту нить монтируют в корпусе со стабильными термическими свойствами и закрывают защитным чехлом. Созданная конструкция помещается в среду, температуру которой необходимо постоянно контролировать.

На выводы чувствительного элемента монтируются провода электрической схемы, которыми подключается цепь замера сопротивления. Его величина пересчитывается в значения температуры на основе ранее произведенной калибровки прибора.

Бареттер — стабилизатор тока

Так называют прибор, состоящий из стеклянного герметичного баллона с газообразным водородом и металлической проволочной спиралью из железа, вольфрама или платины. Эта конструкция по внешнему виду напоминает лампочку накаливания, но она обладает специфической вольт-амперной нелинейной характеристикой.

Вольт-амперная характеристика бареттера

На ВАХ в определенном ее диапазоне образуется рабочая зона, которая не зависит от колебаний приложенного на тело накала напряжения. На этом участке бареттер хорошо компенсирует пульсации питания и работает в качестве стабилизатора тока на подключенной последовательно к нему нагрузке.

Работа бареттера основана на свойстве тепловой инерции тела накала, которая обеспечивается маленьким сечением нити и высокой теплопроводностью окружающего ее водорода. За счет этого при снижении напряжения на приборе ускоряется отвод тепла с его нити.

Это основное отличие бареттера от осветительных ламп накаливания, в которых для поддержания яркости свечения стремятся уменьшить конвективные потери тепла с нити.

В обычных условиях среды при охлаждении металлического проводника происходит уменьшение его электрического сопротивления.

Зависимость сопротивления металлического проводника от температуры

При достижении критической температуры, близкой к нулю градусов по системе измерения Кельвина, происходит резкое падение сопротивления до нулевого значения. На правой картинке показана такая зависимость для ртути.

Это явление, названное сверхпроводимостью, считается перспективной областью для исследований с целью создания материалов, способных значительно снизить потери электроэнергии при ее передаче на огромные расстояния.

Однако, продолжающиеся изучения сверхпроводимости выявили ряд закономерностей, когда на электрическое сопротивление металла, находящегося в области критических температур, влияют другие факторы. В частности, при прохождении переменного тока с повышением частоты его колебаний возникает сопротивление, величина которого доходит до диапазона обычных значений у гармоник с периодом световых волн.

Влияние температуры на электрическое сопротивление/проводимость газов

Газы и обычный воздух являются диэлектриками и не проводят электрический ток. Для его образования нужны носители зарядов, которыми выступают ионы, образующиеся в результате воздействия внешних факторов.

Нагрев способен вызвать ионизацию и движение ионов от одного полюса среды к другому. Убедиться в этом можно на примере простого опыта. Возьмем то же оборудование, которым пользовались для определения влияния нагрева на сопротивление металлического проводника, только вместо проволоки к проводам подключим две металлические пластины, разделенные воздушным пространством.

Влияние нагрева на проводимость газов

Подсоединенный к схеме амперметр покажет отсутствие тока. Если между пластинами поместить пламя горелки, то стрелка прибора отклонится от нулевого значения и покажет величину проходящего через газовую среду тока.

Таким образом установили, что в газах при нагревании происходит ионизация, приводящая к движению электрически заряженных частиц и снижению сопротивления среды.

На значении тока сказывается мощность внешнего приложенного источника напряжения и разность потенциалов между его контактами. Она способна при больших значениях пробить изоляционный слой газов. Характерным проявлением подобного случая в природе является естественный разряд молнии во время грозы.

Примерный вид вольт-амперной характеристики протекания тока в газах показан на графике.

Вольт-амперная харктеристика тока в газах

На начальном этапе под действие температуры и разности потенциалов наблюдается рост ионизации и прохождение тока примерно по линейному закону. Затем кривая приобретает горизонтальное направление, когда увеличение напряжения не вызывает рост тока.

Третий этап пробоя наступает тогда, когда высокая энергия приложенного поля так разгоняет ионы, что они начинают соударяться с нейтральными молекулами, массово образуя из них новые носители зарядов. В результате ток резко возрастает, образуя пробой диэлектрического слоя.

Практическое использование проводимости газов

Явление протекания тока через газы используется в радиоэлектронных лампах и люминесцентных светильниках.

Для этого внутри герметичного стеклянного баллона с инертным газом располагают два электрода:

Устройство газоразрядной люминесцентной лампы

У люминесцентной лампы они выполнены в виде нитей накала, которые разогреваются при включении для создания термоэлектронной эмиссии. Внутренняя поверхность колбы покрыта слоем люминофора. Он излучает видимый нами спектр света, образующийся при инфракрасном облучении, исходящем от паров ртути, бомбардируемых потоком электронов.

Ток газового разряда возникает при приложении напряжения определенной величины между электродами, расположенными по разным концам колбы.

Когда одна из нитей накала перегорит, то на этом электроде нарушится электронная эмиссия и лампа гореть не будет. Однако, если увеличить разность потенциалов между катодом и анодом, то снова возникнет газовый разряд внутри колбы и свечение люминофора возобновится.

Это позволяет использовать светодиодные колбы с нарушенными нитями накала и продлять их ресурс работы. Только следует учитывать, что при этом в несколько раз надо поднять на ней напряжение, А это значительно повышает потребляемую мощность и риски безопасного использования.

Влияние температуры на электрическое сопротивление жидкостей

Прохождение тока в жидкостях создается в основном за счет движения катионов и анионов под действием приложенного извне электрического поля. Лишь незначительную часть проводимости обеспечивают электроны.

Влияние температуры на электрическое сопротивление жидкости

Влияние температуры на величину электрического сопротивления жидкого электролита описывается формулой, приведенной на картинке. Поскольку в ней значение температурного коэффициента α всегда отрицательно, то с увеличением нагрева проводимость возрастает, а сопротивление падает так, как показано на графике.

Это явление необходимо учитывать при зарядке жидкостных автомобильных (и не только) аккумуляторных батарей.

Влияние температуры на электрическое сопротивление полупроводников

Изменение свойств полупроводниковых материалов под воздействием температуры позволило использовать их в качестве:

  • термических сопротивлений;
  • термоэлементов;
  • холодильников;
  • нагревателей.

Таким названием обозначают полупроводниковые приборы, изменяющие свое электрическое сопротивление под влиянием тепла. Их температурный коэффициент сопротивления (ТКС) значительно выше, чем у металлов.

Величина ТКС у полупроводников может иметь положительное или отрицательное значение. По этому параметру их разделяют на позитивные «РТС» и негативные «NTC» термисторы. Они обладают различными характеристиками.

Зависимость сопротивления терморезисторов от температуры

Для работы терморезистора выбирают одну из точек на его вольт-амперной характеристике:

  • линейный участок применяют для контроля температуры либо компенсации изменяющихся токов или напряжений;
  • нисходящая ветвь ВАХ у элементов с ТКС

Применение релейного терморезистора удобно при контроле или измерениях процессов электромагнитных излучений, происходящих на сверхвысоких частотах. Это обеспечило их использование в системах:

1. контроля тепла;

2. пожарной сигнализации;

3. регулирования расхода сыпучих сред и жидкостей.

Кремниевые терморезисторы с маленьким ТКС>0 используют в системах охлаждения и стабилизации температуры транзисторов.

Эти полупроводники работают на основе явления Зеебека: при нагреве спаянного места двух разрозненных металлов на стыке замкнутой цепи возникает ЭДС. Таким способом они превращают тепловую энергию в электричество.

Термоэлектрический генератор на элементах Пельтье

Конструкцию из двух таких элементов называют термопарой. Ее КПД лежит в пределах 7÷10%.

Термоэлементы используют в измерителях температур цифровых вычислительных устройств, требующих миниатюрные габариты и высокую точность показаний, а также в качестве маломощных источников тока.

Полупроводниковые нагреватели и холодильники

Они работают за счет обратного использования термоэлементов, через которые пропускают электрический ток. При этом на одном месте спая происходит его нагрев, а на противоположном — охлаждение.

Полупроводниковые спаи на основе селена, висмута, сурьмы, теллура позволяют обеспечить разность температур в термоэлементе до 60 градусов. Это позволило создать конструкцию холодильного шкафа из полупроводников с температурой в камере охлаждения до -16 градусов.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Объясните, почему удельное сопротивление электролитов с увеличением температуры уменьшается, а металлических проводников

Пожалуйста, войдите или зарегистрируйтесь для публикации ответа на этот вопрос.

решение вопроса

Связанных вопросов не найдено

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

  • Все категории
  • экономические 43,679
  • гуманитарные 33,657
  • юридические 17,917
  • школьный раздел 612,708
  • разное 16,911

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

  • Обратная связь
  • Правила сайта

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *