Кто открыл закон отражения света
Перейти к содержимому

Кто открыл закон отражения света

  • автор:

Законы отражения света

На границе раздела двух различных сред, если эта граница раздела значительно превышает длину волны, происходит изменение направления распространения света: часть световой энергии возвращается в первую среду, то есть отражается, а часть проникает во вторую среду и при этом преломляется. Луч АО носит название падающий луч, а луч OD – отраженный луч (см. рис. 1.3). Взаимное расположение этих лучей определяют законы отражения и преломления света.

Рис. 1.3. Отражение и преломление света.

Угол α между падающим лучом и перпендикуляром к границе раздела, восстановленным к поверхности в точке падения луча, носит название угол падения.

Угол γ между отражённым лучом и тем же перпендикуляром, носит название угол отражения.

Каждая среда в определённой степени (то есть по своему) отражает и поглощает световое излучение. Величина, которая характеризует отражательную способность поверхности вещества, называется коэффициент отражения. Коэффициент отражения показывает, какую часть принесённой излучением на поверхность тела энергии составляет энергия, унесённая от этой поверхности отражённым излучением. Этот коэффициент зависит от многих причин, например, от состава излучения и от угла падения. Свет полностью отражается от тонкой плёнки серебра или жидкой ртути, нанесённой на лист стекла.

Законы отражения света
1 Падающий луч, отражающий луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости.
2 Угол отражения γ равен углу падения α :

Законы отражения света были найдены экспериментально ещё в 3 веке до нашей эры древнегреческим учёным Евклидом. Также эти законы могут быть получены как следствие принципа Гюйгенса, согласно которому каждая точка среды, до которой дошло возмущение, является источником вторичных волн. Волновая поверхность (фронт волны) в следующий момент представляет собой касательную поверхность ко всем вторичным волнам. Принцип Гюйгенса является чисто геометрическим.

На гладкую отражательную поверхность КМ (рис. 1.4) падает плоская волна, то есть волна, волновые поверхности которой представляют собой полоски.

Рис. 1.4. Построение Гюйгенса.

А1А и В1В – лучи падающей волны, АС – волновая поверхность этой волны (или фронт волны).

Пока фронт волны из точки С переместится за время t в точку В, из точки А распространится вторичная волна по полусфере на расстояние AD = CB, так как AD = vt и CB = vt, где v – скорость распространения волны.

Волновая поверхность отражённой волны – это прямая BD, касательная к полусферам. Дальше волновая поверхность будет двигаться параллельно самой себе по направлению отражённых лучей АА2 и ВВ2.

Прямоугольные треугольники ΔАСВ и ΔADB имеют общую гипотенузу АВ и равные катеты AD = CB. Следовательно, они равны.

Углы САВ = = α и DBA = = γ равны, потому что это углы со взаимно перпендикулярными сторонами. А из равенства треугольников следует, что α = γ .

Из построения Гюйгенса также следует, что падающий и отражённый лучи лежат в одной плоскости с перпендикуляром к поверхности, восстановленным в точке падения луча.

Законы отражения справедливы при обратном направлении хода световых лучей. В следствие обратимости хода световых лучей имеем, что луч, распространяющийся по пути отражённого, отражается по пути падающего.

Большинство тел лишь отражают падающее на них излучение, не являясь при этом источником света. Освещённые предметы видны со всех сторон, так как от их поверхности свет отражается в разных направлениях, рассеиваясь. Это явление называется диффузное отражение или рассеянное отражение. Диффузное отражение света (рис. 1.5) происходит от всех шероховатых поверхностей. Для определения хода отражённого луча такой поверхности в точке падения луча проводится плоскость, касательная к поверхности, и по отношению к этой плоскости строятся углы падения и отражения.

Рис. 1.5. Диффузное отражение света.

Например, 85% белого света отражается от поверхности снега, 75% — от белой бумаги, 0,5% — от чёрного бархата. Диффузное отражение света не вызывает неприятных ощущений в глазу человека, в отличие от зеркального.

Зеркальное отражение света – это когда падающие на гладкую поверхность под определённым углом лучи света отражаются преимущественно в одном направлении (рис. 1.6). Отражающая поверхность в этом случае называется зеркало (или зеркальная поверхность). Зеркальные поверхности можно считать оптически гладкими, если размеры неровностей и неоднородностей на них не превышают длины световой волны (меньше 1 мкм). Для таких поверхностей выполняется закон отражения света.

Рис. 1.6. Зеркальное отражение света.

Плоское зеркало – это зеркало, отражающая поверхность которого представляет собой плоскость. Плоское зеркало даёт возможность видеть предметы, находящиеся перед ним, причём эти предметы кажутся расположенными за зеркальной плоскостью. В геометрической оптике каждая точка источника света S считается центром расходящегося пучка лучей (рис. 1.7). Такой пучок лучей называется гомоцентрическим. Изображением точки S в оптическом устройстве называется центр S’ гомоцентрического отражённого и преломлённого пучка лучей в различных средах. Если свет, рассеянный поверхностями различных тел, попадает на плоское зеркало, а затем, отражаясь от него, падает в глаз наблюдателя, то в зеркале видны изображения этих тел.

Рис. 1.7. Изображение, возникающее с помощью плоского зеркала.

Изображение S’ называется действительным, если в точке S’ пересекаются сами отражённые (преломлённые) лучи пучка. Изображение S’ называется мнимым, если в ней пересекаются не сами отражённые (преломлённые) лучи, а их продолжения. Световая энергия в эту точку не поступает. На рис. 1.7 представлено изображение светящейся точки S, возникающее с помощью плоского зеркала.

Луч SO падает на зеркало КМ под углом 0°, следовательно, угол отражения равен 0°, и данный луч после отражения идёт по пути OS. Из всего множества попадающих из точки S лучей на плоское зеркало выделим луч SO1.

Луч SO1 падает на зеркало под углом α и отражается под углом γ ( α = γ ). Если продолжить отражённые лучи за зеркало, то они сойдутся в точке S1, которая является мнимым изображением точки S в плоском зеркале. Таким образом, человеку кажется, что лучи выходят из точки S1, хотя на самом деле лучей, выходящих их этой точки и попадающих в глаз, не существует. Изображение точки S1 расположено симметрично самой светящейся точке S относительно зеркала КМ. Докажем это.

Луч SB, падающий на зеркало под углом 2 (рис. 1.8), согласно закону отражения света отражается под углом 1 = 2.

Рис. 1.8. Отражение от плоского зеркала.

Из рис. 1.8 видно, что углы 1 и 5 равны – как вертикальные. Суммы углов 2 + 3 = 5 + 4 = 90°. Следовательно, углы 3 = 4 и 2 = 5.

Прямоугольные треугольники ΔSOB и ΔS1OB имеют общий катет ОВ и равные острые углы 3 и 4, следовательно, эти треугольники равны по стороне и двум прилежащим к катету углам. Это означает, что SO = OS1, то есть точка S1 расположена симметрично точке S относительно зеркала.

Для того чтобы найти изображение предмета АВ в плоском зеркале, достаточно опустить перпендикуляры из крайних точек предмета на зеркало и, продолжив их за пределы зеркала, отложить за ним расстояние, равное расстоянию от зеркала до крайней точки предмета (рис. 1.9). Это изображение будет мнимым и в натуральную величину. Размеры и взаимное расположение предметов сохраняются, но при этом в зеркале левая и правая стороны у изображения меняются местами по сравнению с самим предметом. Параллельность падающих на плоское зеркало световых лучей после отражения также не нарушается.

Рис. 1.9. Изображение предмета в плоском зеркале.

В технике часто применяют зеркала со сложной кривой отражающей поверхностью, например, сферические зеркала. Сферическое зеркало – это поверхность тела, имеющая форму сферического сегмента и зеркально отражающая свет. Параллельность лучей при отражении от таких поверхностей нарушается. Зеркало называют вогнутым, если лучи отражаются от внутренней поверхности сферического сегмента. Параллельные световые лучи после отражения от такой поверхности собираются в одну точку, поэтому вогнутое зеркало называют собирающим. Если лучи отражаются от наружной поверхности зеркала, то оно будет выпуклым. Параллельные световые лучи рассеиваются в разные стороны, поэтому выпуклое зеркало называют рассеивающим.

Урок физики в 8 классе на тему «Отражение света. Закон отражения света».

Это второй урок раздела «Световые явления». Ученикам перед уроком предлагается разделиться на три группы. Для каждой группы приготовлены рабочие тетради и лабораторное оборудование, при помощи которого проводится эксперимент. Урок построен на основе системно-деятельностного подхода. Имеет структурированный характер, что позволяет подавать материал системными дозами, решать проблемы не репродуктивно, а исследовательским путём, в процессе которого используется разнообразная информация. Структура занятия была выбрана в соответствии с возрастными особенностями подростка: бурное развитие воображения, фантазия, коммуникабельность.

Мотивация учащихся к учебной деятельности формируется через необычность, новизну деятельности. Пейзажи, музыкальная заставка, поэтические строки привлекают ребят. На протяжении всего урока использование ИКТ позволяет стабильно удерживать внимание детей и поддерживать их интерес к изучаемой теме.

На уроке используются современные технологии: информационно-коммуникационные, здоровьесбережение, проблемное обучение. На протяжении занятия перед учащимися ставятся проблемные ситуации, проблемные вопросы, в разрешении которых необходима самостоятельная деятельность.

Считаю, что работа в группах помогает ребятам совместными усилиями не только выдвигать гипотезы, но и находить способы разрешения проблем, через исследовательскую и поисковую деятельности.

Ситуация успеха создается через реализацию потребности в познании, эмоциональном восприятии новых для ребят форм получения информации – рабочая тетрадь, учебно-методический комплекс «Физика 7-9» (http://school-collection.edu.ru/catalog/rubr/4dc8092d-e921-11dc-95ff-0800200c9a66/)

В результате мыслительной деятельности участники образовательного процесса должны сделать вывод, что познавать мир можно только в результате деятельности.

Тип урока: урок изучения и первичного закрепления новых знаний.

Цель урока: сформулировать и научить применять закон отражения света. Развитие у учащихся способность осознавать себя в связях с окружающим миром.

1. ОБРАЗОВАТЕЛЬНАЯ – сформировать понятие отражения света, раскрыть сущность закона отражения.

2. РАЗВИВАЮЩАЯ – способствовать формированию умения анализировать, выделять главное, обобщать, объяснять понятия, доказывать свою точку зрения на основе эксперимента.

3. ВОСПИТАТЕЛЬНАЯ – способствовать развитию диалогического общения, умения работать в группах и формирование мировоззрения. Раскрытие для учащихся ценностного содержания окружающего мира.

1. Мотивирование к учебной деятельности.

2. Актуализация и фиксирование индивидуального затруднения в пробном учебном действии.

3. Постановка учебной проблемы.

4. Выдвижение и проверка гипотезы.

5. Первичное закрепление с проговариванием во внешней речи.

6. Самостоятельная работа с самопроверкой по эталону.

7. Включение в систему знаний и повторение.

8. Рефлексия учебной деятельности на уроке (итог).

Оборудование урока: компьютер, плоские зеркала, карандаши, транспортир, лазерные фонарики, рабочие тетради.

Учитель: Здравствуйте, ребята!

Я, Дракина Екатерина Анатольевна, преподаю один из самых значимых для жизни предметов – физику!

Я предлагаю работать под девизом: «Единственный путь, ведущий к познанию, – это деятельность». Б. Шоу.

Для организации деятельности, я надеюсь, она у нас будет активной, разделитесь на группы так, чтобы ваша работа была плодотворной.

Ничто в природе не было так неуловимо, ни один свой секрет природа не охраняла так тщательно, как секрет о нем. На этом основании его часто называли самым темным пятном в физике. Но именно он позволил нам познать окружающий мир.

Как вы думаете, о чем идет речь?

СВЕТ! В погоне за светом, стремясь к познанию бесконечности, 12 апреля 1961 был совершен первый полет в космос. Простой советский парень Юрий Гагарин стал первым человеком, который проложил дорогу к звездам! 50 лет прошло с тех пор, но окружающий мир остается для нас неиссякаемым источником познания.

Да, солнце: пламенно, бессмертно, бесконечно.

Дарует людям жизнь. Рассеивает мрак.

А вот луна: взаймы берет у солнца вечно!

Что вас заинтересовало при прослушивании отрывка?

Какое явление мы будем рассматривать на уроке?

Тема урока: «Отражение света. Закон отражения света».

3. Постановка учебной проблемы.

В X веке на смену древнегреческой теории зрительных лучей, которые выходят из глаз и создают зрительные ощущения, пришла теория зрения арабского физика и математика Альхазена, согласно которой зрительные изображения тел создаются лучами, исходящими от видимых тел. Попадая в глаз, эти лучи вызывают зрительные ощущения.

О каких лучах, на ваш взгляд идет речь?

4. Выдвижение и проверка гипотезы.

Посмотрите на экран, какой физический закон демонстрирует нам природа? (см. презентацию).

Закон прямолинейного распространения света в однородной среде.

Узкий световой луч является физической моделью узкого пучка света?

Как вы думаете, является ли световым лучом свет от лазерного фонарика? Ведь луча не видно. Как сделать его видимым?

Если в помещении будет задымленность, или пыльно, то луч станет виден.

Микроитог: Скажите, благодаря чему мы видим все окружающие нас предметы?

Для того чтобы выяснить, что происходит при отражении света от отражающей поверхности, введем важные понятия.

Работа с ИУМК «Физика 7-9».

А теперь я предлагаю вам провести самый настоящий эксперимент! У вас на столах находятся отражающие поверхности, лазерные фонарики, транспортиры и экраны.

Откройте рабочие тетради. (Приложение №2)

Прочитайте инструкцию по выполнению задания в рабочей тетради. В ходе эксперимента выясните зависимость угла отражения от угла падения.

(1 группа – угол падения 30º, 2 группа – 60º, 3 группа – 45º)

Сформулировал закон отражения света греческий математик Евклид в своем трактате «Оптика» (300 г. до н.э).

5. Первичное закрепление с проговариванием во внешней речи.

Найдите в учебнике и прочтите закон отражения света.

Закон отражения света гласит: Лучи, падающий и отраженный, лежат в одной плоскости с перпендикуляром, проведенным к границе раздела двух сред в точке падения луча. Угол падения равен углу отражения.

6. Самостоятельная работа с самопроверкой по эталону.

Перед вами стоит задача ответить на следующие вопросы:

Как изменится угол между падающим на зеркальную поверхность и отраженным лучами при уменьшении угла падения на 5°?

Угол падения на зеркальную поверхность 15°. Чему равен угол между падающим лучом и поверхностью?

Угол между падающим и отраженными лучами 20°. Каким будет угол отражения, если угол падения увеличится на 5°?

7. Включение в систему знаний и повторение.

Отражение света встречается повсеместно в нашей жизни!

По какому основанию можно сгруппировать фотографии?

Прокомментируйте следующие рисунки. (См. презентацию).

Свет зеркально отражается от очень гладкой поверхности, отражение света при этом зеркальное. Глядя на зеркало, мы видим не зеркало, а отражения других предметов в этом зеркале.

После отражения от шероховатой поверхности свет распространяется во все стороны. Такое изображение называют диффузным или рассеянным. Большинство предметов мы видим, потому что они отражают свет диффузно.

Где мы применяем эти знания в жизни?

Каково назначение зеркал? Какие вы знаете зеркала?

Выпуклые зеркала заднего вида увеличивают поле обзора, при этом предметы представляются в уменьшенном виде.

Древняя легенда рассказывает, будто знаменитый греческий ученый Архимед сжег с помощью солнечных лучей, отраженных от вогнутого зеркала, римский флот, напавший на город Сиракузы.

Вогнутое зеркало телескопа-рефлектора позволяет сфокусировать в окуляре свет от далеких космических объектов.

Многие фокусы построены на оптическом обмане.

В книге Я.И.Перельмана «Занимательная физика» вы можете прочесть интереснейший опыт «Говорящая голова».

8. Рефлексия учебной деятельности на уроке.

Познавая мир, мы учимся применять знания, которые необходимы в жизни.

Н.В.Гоголь. «Повесть о том, как поссорился Иван Иванович с Иваном Никифоровичем»

«Комната, в которую вступил Иван Иванович, была совершенно темна, потому что ставни были закрыты, и солнечный луч, проходя в дыру, сделанную в ставне, принял радужный цвет и, ударяясь в противоположную стену, рисовал на ней пестрый ландшафт из крыш, деревьев и развешенного на дворе платья, все только в обращенном виде»

Н.В.Гоголь описал действие удивительного прибора, который сейчас вам предстоит выбрать по описанию.

Ребята, я вам покажу приборы, сделанные моими учениками. Их действия основаны на явлении отражения света и распространения света. Скажите, вам знакомы эти приборы?

Именно поэтому я вам предлагаю открыть рабочие тетради и выполнить исследовательскую работу.

Ваша задача исследовать особенности приборов, выяснить принцип действия и как они устроены.

2. На каком принципе действует.

3.Для каких целей используется (использовался).

Периско́п (от др.-греч. περι- — «вокруг» и σκοπέω — «смотрю») — оптический прибор для наблюдения из укрытия. Простейшая форма перископа — труба, на обоих концах которой закреплены зеркала, наклоненные относительно оси трубы на 45° для изменения хода световых лучей. В более сложных вариантах для отклонения лучей вместо зеркал используются призмы, а получаемое наблюдателем изображение увеличивается с помощью системы линз.

Наиболее известные виды перископа — такие, как перископы на подводных лодках, ручные перископы и стереотрубы (их также можно использовать как перископ) — широко применяются в военном деле.

Калейдоскоп был известен ещё с давних времен. В древнем Египте известен прообраз калейдоскопа. И только через много веков устройство для получения симметричных картинок с помощью зеркал назвали калейдоскопом.

Название свое «калейдоскоп» получил от греческого kalos – красивый, eidos – вид и skopeo – смотрю, наблюдаю. А в России калейдоскоп называли трубкой, “показывающей красивые виды”. У нас в России калейдоскоп появился в конце 18 века и изобрел его великий русский ученый М.В. Ломоносов, который восхищался красотой стекла и изучал различные способы его применения.

Внутри калейдоскопа может стоять от 2-3-х зеркал до 4-х или более. Различное взаимное расположение зеркал позволяет получить разное количество дублированных изображений одного предмета. Внутри трубки между зеркалами помещают хотя бы несколько кусочков цветного стекла.

Желательно, чтобы предметы, которыми заполняется калейдоскоп для создания узоров, были бы разными по величине и по весу. Кроме стеклышек в качестве дополнительных компонентов используют металл, пластик, бисер, камни, перламутр, перышки, и др. Один конец трубки закрыт матовым стеклом, а с другого конца отверстие малого диаметра закрыто прозрачным стеклом. Повернув прибор матовым стеклом к свету, можно видеть через прозрачное стекло симметрично расположенные, красивые цветные узоры, форма которых меняется при вращении калейдоскопа.

Узоры в калейдоскопе практически никогда не повторяются. Как сказано в известной книге Я.И. Перельмана, если у вас есть калейдоскоп с 20 стеклышками и вы будете поворачивать его 10 раз в минуту, то вам понадобится 500 000 миллионов лет, чтобы просмотреть все узоры.

Ка́мера-обску́ра (лат. cameraobscūra «тёмная комната») — простейший вид устройства, позволяющего получать оптическое изображение объектов. Представляет собой светонепроницаемый ящик с отверстием в одной из стенок и экраном (матовым стеклом или тонкой белой бумагой) на противоположной стенке. Принцип действия камеры-обскуры впервые объяснил арабский физик и математик X века Ибн ал-Хайсам (Альхазен). При этом он сделал вывод, что общепринятая в те годы теория распространения света (согласно которой лучи света исходят из глаз и как бы «общупывают» объект) не соответствует действительности. Многие художники (например, Вермеер) использовали камеру-обскуру для создания своих произведений — пейзажей, портретов, бытовых зарисовок. Камеры-обскуры тех времён представляли собой большие ящики с системой зеркал для отклонения света. Часто вместо простого отверстия использовался объектив (обычно одиночная линза), что позволяло значительно увеличить яркость и резкость изображения. С развитием оптики объективы усложнялись, а после изобретения светочувствительных материалов камеры-обскуры стали фотоаппаратами.

Ребята, перед вами приборы, принцип действия которых вы изучили. Выберите тот, о котором речь идет в произведении, и объясните свой выбор.

Выберите из текста информацию, на основании которой вы сделали этот вывод.

Используя понятие светового луча, ответьте на вопрос, почему на противоположной стене все было в обращенном виде?

Обратите внимание, Гоголь в художественном произведении описал закон прямолинейного распространения света. Умение видеть необычное в обычном – это и есть познание мира.

Для чего нам нужны знания об отражении света?

– Энергия солнца (экология).

– Техника и наука.

Применяя знания на практике, мы познаем мир.

Для чего? Чтобы жить в гармонии с собой и миром!

Познавая мир, человек познает себя.

Екатерина Дракина, учитель физики лицея №6 города Ессентуки Ставропольского края, участница XV Всероссийского конкурса методических разработок «Сто друзей»

В прикрепленных файлах: тетрадь 1, тетрадь 2, тетрадь 3, swf-файл, музыка к презентации.

Презентацию можно скачать здесь.

Отражение света, виды, свойства и применение

«Отражение света – это физическое явление, которое происходит при взаимодействии света с поверхностью объекта. Когда луч света падает на поверхность, часть света отражается, а часть поглощается или проходит сквозь объект. «

Содержание:

1. История открытия

2. Виды отражения

4. Угол отражения

5. Экспериментальные методы

История открытия

Открытие отражения света связано с именем Галилео Галилея. В 1632 году он провел эксперимент, который доказал, что свет может отражаться от поверхности предметов.

Эксперимент состоял в том, что ученый направил луч света на плоскую поверхность и увидел, что часть света отразилась обратно к нему. Это было первым доказательством того, что свет представляет собой волны, а не частицы.

Галилео Галилей

Также открытие отражения света было сделано Исааком Ньютоном в XVII веке. Он заметил, что когда свет падает на зеркало, он отражается обратно в сторону источника света. Это открытие стало одним из важнейших в физике и позволило понять, как работает свет и как его можно использовать в науке и технике.

Позже, в 1801 году, Томас Юнг провел еще один эксперимент, который подтвердил, что свет действительно может отражаться от поверхностей. Он направил два луча света на две пластинки, расположенные друг за другом, и увидел, что лучи отражаются от обеих пластинок.

Это открытие имело огромное значение для науки и технологии, так как оно позволило создавать новые оптические инструменты и приборы, такие как телескопы, микроскопы и фотоаппараты.

Виды отражения света

Существуют следующие виды отражения света:

  • Зеркальное отражение: это физическое явление, заключающееся в отражении света от поверхности, обладающей зеркальными свойствами. Эта поверхность может быть абсолютно гладкой и блестящей, как в случае с зеркалами, или же иметь различные неровности и шероховатости. Когда свет попадает на зеркальную поверхность, он отражается от нее под прямым углом, сохраняя при этом свою первоначальную энергию и направление. Таким образом, зеркальная поверхность не только отражает свет, но и позволяет увидеть себя в отражении.
  • Диффузное отражение: напрмер, от шероховатых поверхностей или материалов с низкой степенью отражения. Такое отражение создает ощущение мягкости и теплоты, что делает его популярным в дизайне интерьера.

Виды отражения света

  • Рассеянное отражение: этот вид от множества мелких частиц на поверхности материала, создавая рассеянный свет. Используется для создания атмосферы в помещениях, таких как библиотеки, музеи и галереи.
  • Поглощение света: это процесс, при котором часть света поглощается материалом, а другая часть отражается. Поглощающий материал может быть темным или иметь низкую степень отражения, что создает эффект темноты и тени.
  • Отражение от прозрачных материалов: для отражения света через прозрачные материалы, такие как стекло или пластик. Прозрачные материалы могут пропускать свет и создавать различные эффекты, такие как преломление или отражение.
  • Отражение от поверхностей с неровностями: отражение от таких поверхностей может создавать интересные эффекты и использоваться в дизайне для создания текстуры и глубины.

Все виды отражения света могут использоваться в различных областях, от дизайна интерьера до создания световых эффектов на сцене. Каждый вид имеет свои преимущества и может использоваться в зависимости от задачи и желаемого эффекта.

Свойства отражения света

Отражение света — это свойство света, которое заключается в том, что свет, падающий на поверхность, отражается от нее. Это явление происходит благодаря тому, что световые волны распространяются во всех направлениях, и когда они сталкиваются с поверхностью, часть из них отражается, а часть проходит сквозь поверхность и продолжает распространяться.

Свойства отражения света:

  • Отражение происходит от всех поверхностей, на которые падает свет.
  • Отражающая способность зависит от цвета поверхности и угла падения света.
  • Отраженный свет всегда идет в обратном направлении относительно падающего света.
  • Угол падения равен углу отражения.
  • Интенсивность отраженного света зависит от яркости падающего света и отражающей способности поверхности.
  • Если поверхность имеет неровности или шероховатости, то отражение может быть неравномерным.

Все эти свойства отражают различные аспекты отражения света и могут быть использованы в различных областях науки и техники, таких как оптика, физика, технологии, искусство и т.д.

Угол отражения света

Угол отражения света (угол падения) — это угол, образованный между падающим на поверхность светом и отраженным светом. Он зависит от угла между поверхностью и падающим светом, а также от свойств материала поверхности.

При падении света на поверхность он может отразиться под разными углами, в зависимости от коэффициента отражения материала поверхности. Если коэффициент отражения высокий (например, зеркало), то свет отразится почти под тем же самым углом, под каким он упал. Если же коэффициент отражения низкий (например, стекло), то свет будет отклоняться от своего первоначального направления.

Для расчета угла отражения необходимо знать угол падения, коэффициент отражения материала поверхности и длину пути света через поверхность. Используя эти данные, можно использовать закон отражения света для определения угла отражения.

Угол падения связан с углом отражения формулой:

где φ — угол падения, α — угол отражения.

Отражение света

Экспериментальные методы исследования отражения света

1. Метод зеркального отражения: используется для измерения коэффициента отражения зеркала. Зеркало помещается на поверхность, и свет отражается от него. Коэффициент отражения определяется как отношение количества отраженного света к общему количеству света, падающего на зеркало.

2. Метод зеркальной интерферометрии: используется для определения показателя преломления материала зеркала. Свет проходит через два зеркала, которые находятся на расстоянии друг от друга. Измеряется разность фаз между отраженными лучами, что позволяет определить показатель преломления.

Отражение света в безопасности

3. Метод зеркальных линз: применяется для определения оптических свойств зеркал. Зеркало помещается в оптическую систему, и измеряется изменение положения изображения при изменении угла наклона зеркала. Это позволяет определить оптические свойства зеркала, такие как фокусное расстояние и кривизна поверхности.

4. Метод зеркально-оптических измерений: используется для анализа оптических свойств зеркал в широком диапазоне длин волн. Зеркало помещается внутри оптической системы, и измеряется отражение света при различных длинах волн. Это позволяет получить информацию о спектральных свойствах зеркала и его способности отражать различные цвета.

5. Метод зеркального анализатора: применяется для измерения угла падения и угла отражения света от зеркала. Зеркало поворачивается вокруг своей оси, и измеряется угол падения и угол отражения света. Это позволяет определить форму зеркала и его оптические характеристики.

Применение отражения света

  • Освещение — отражение света используется для создания освещения в помещении. Светильники, зеркала и другие отражающие поверхности используются для отражения света и создания нужного освещения.
  • Реклама — отражение света может быть использовано для создания ярких и привлекательных рекламных щитов и вывесок. Например, светоотражающие пленки могут использоваться для создания яркого и заметного рекламного изображения.
  • Оптика — отражение света играет важную роль в оптике. Например, зеркала используются для отражения света и формирования изображений, а линзы используются для фокусировки света.
  • Безопасность — отражение света также может быть использовано в безопасности. Например, светоотражатели могут быть использованы на одежде для увеличения видимости в темноте.
  • Декоративное освещение — отражение света можно использовать для создания декоративной подсветки. Например, светильники с зеркальным покрытием могут создавать красивые световые эффекты на стенах и потолке.

Законы отражения света

Упавшие на поверхность тела лучи изменяют направление дальнейшего распространения. При отражении свет возвращается в ту же среду, из которой он упал на поверхность тела. Тело, отражающее лучи, становится источником отраженного света.

Приведите примеры тел, способных отражать свет и быть источником отражённого света.

Презентация Законы отражения света

Угол падения – угол между падающим лучом и перпендикуляром к границе раздела двух сред в точке падения.

Угол отражения – угол между отражённым лучом и перпендикуляром к границе раздела двух сред.

Падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения).

Угол отражения b равен углу падения α.

Кто установил законы отражения света?

Голландец Виллеброрд Снель ван Ройен (1580-1626), именовавший себя Снеллиусом, наблюдал, как тонкий луч света отражается в зеркале. Он просто измерил угол падения и угол отражения луча (чего до него не делал никто) и установил закон: угол падения равен углу отражения.

—Сэр Дэвид Брюстер ( 11 декабря 1781 — 10 февраля1868) — шотландский физик. C 1801 года стал заниматься физикой, которой потом — и преимущественно оптике — посвятил свою жизнь. Специализировался на изучении оптических явлений, прежде всего спектральных и поляризационных. Открыл закон, носящий его имя.

Содержимое разработки

Автор : Баженов Валерий Михайлович ОГБОУ СПО “ Костромской энергетический техникум им. Ф.В Чижова ”

Автор : Баженов Валерий Михайлович

ОГБОУ СПО Костромской энергетический техникум им. Ф.В Чижова

Источники отраженного света Упавшие на поверхность тела лучи изменяют направление дальнейшего распространения. При отражении свет возвращается в ту же среду, из которой он упал на поверхность тела. Тело, отражающее лучи, становится источником отраженного света . Приведите примеры тел, способных отражать свет и быть источником отражённого света.

Источники отраженного света

Упавшие на поверхность тела лучи изменяют направление дальнейшего распространения. При отражении свет возвращается в ту же среду, из которой он упал на поверхность тела. Тело, отражающее лучи, становится источником отраженного света .

Приведите примеры тел, способных отражать свет и быть источником отражённого света.

 Угол падения – угол между падающим лучом и перпендикуляром к границе раздела двух сред в точке падения. Угол отражения – угол между отражённым лучом и перпендикуляром к границе раздела двух сред. C S B SOC – угол падения (угол  ) COB – угол отражения (угол  )   M N O Линия MN – поверхность раздела двух сред. Луч SO – падающий луч . Луч OB – отраженный луч .

Угол падения – угол между падающим лучом и перпендикуляром к границе раздела двух сред в точке падения.

Угол отражения – угол между отражённым лучом и перпендикуляром к границе раздела двух сред.

Линия MN – поверхность раздела двух сред.

Луч SO – падающий луч .

Луч OB – отраженный луч .

Законы отражения света Падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения). Угол отражения  равен углу падения α. (  =  )

Законы отражения света

  • Падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения).
  • Угол отраженияравен углу падения α.

(  =  )

Кто установил законы отражения света? Голландец Виллеброрд Снель ван Ройен (1580-1626), именовавший себя Снеллиусом, наблюдал, как тонкий луч света отражается в зеркале. Он просто измерил угол падения и угол отражения луча (чего до него не делал никто) и установил закон: угол падения равен углу отражения .

Кто установил законы отражения света?

Голландец Виллеброрд Снель ван Ройен (1580-1626), именовавший себя Снеллиусом, наблюдал, как тонкий луч света отражается в зеркале. Он просто измерил угол падения и угол отражения луча (чего до него не делал никто) и установил закон: угол падения равен углу отражения .

Сэр Дэвид Брюстер ( 11 декабря 1781 — 10 февраля1868) — шотландский физик. C 1801 года стал заниматься физикой, которой потом — и преимущественно оптике — посвятил свою жизнь. Специализировался на изучении оптических явлений, прежде всего спектральных и поляризационных. Открыл закон, носящий его имя .

  • Сэр Дэвид Брюстер ( 11 декабря 1781 — 10 февраля1868) — шотландский физик. C 1801 года стал заниматься физикой, которой потом — и преимущественно оптике — посвятил свою жизнь. Специализировался на изучении оптических явлений, прежде всего спектральных и поляризационных. Открыл закон, носящий его имя .

Огюсте́н Жан Френе́ль ( 10 мая 1788 — 14 июля 1827),французский физик , один из создателей волновой теории света. Основные работы Френеля посвящены физической оптике . D 1818 году разработал теорию дифракции света, на основе которой предложил метод расчёта дифракционной картины . 1821 году независимо от Т. Юнга доказал поперечность световых волн . В 1823 году установил законы изменения поляризации света при его отражении и преломлении

  • Огюсте́н Жан Френе́ль ( 10 мая 1788 — 14 июля 1827),французский физик , один из создателей волновой теории света. Основные работы Френеля посвящены физической оптике . D 1818 году разработал теорию дифракции света, на основе которой предложил метод расчёта дифракционной картины . 1821 году независимо от Т. Юнга доказал поперечность световых волн . В 1823 году установил законы изменения поляризации света при его отражении и преломлении

Фёдор Ива́нович Фёдоров ( 19 июня 1911 — 13 октября 1994) — советский и белорусский физик-теоретик . В 1954 году открыл явление бокового смещения луча света при отражении, известное как сдвиг Фёдорова

  • Фёдор Ива́нович Фёдоров ( 19 июня 1911 — 13 октября 1994) — советский и белорусский физик-теоретик . В 1954 году открыл явление бокового смещения луча света при отражении, известное как сдвиг Фёдорова

Если луч падает на зеркало в направлении BO , то отражённый луч пойдёт в направлении OS . Падающий и отражённый луч могут меняться местами. Это свойство лучей называется обратимостью световых лучей. C S B   M N O

Если луч падает на зеркало в направлении BO , то отражённый луч пойдёт в направлении OS . Падающий и отражённый луч могут меняться местами. Это свойство лучей называется обратимостью световых лучей.

 Отражение света от некоторой поверхности, разделяющей пространство на две части, означает изменение направления переноса энергии света таким образом, что свет продолжает распространяться в первоначальной среде. Если пучок параллельных лучей падает на неровную поверхность или мелкие частицы, то направление лучей меняется случайным образом, и тогда говорят о рассеянии света .

Отражение света от некоторой поверхности, разделяющей пространство на две части, означает изменение направления переноса энергии света таким образом, что свет продолжает распространяться в первоначальной среде.

Если пучок параллельных лучей падает на неровную поверхность или мелкие частицы, то направление лучей меняется случайным образом, и тогда говорят о рассеянии света .

Виды отражения Диффузное Зеркальное Зеркальное отражение – отражение параллельных падающих лучей от плоской поверхности, при котором все отражённые лучи параллельны. Диффузное отражение – отражение параллельных падающих лучей от плоской поверхности, при котором все отражённые лучи не остаются параллельными .

Виды отражения

Диффузное Зеркальное

Зеркальное отражение –

отражение параллельных падающих лучей от плоской поверхности, при котором все отражённые лучи параллельны.

Диффузное отражение –

отражение параллельных падающих лучей от плоской поверхности, при котором все отражённые лучи не остаются параллельными .

Какие виды отражения Вы знаете? Что изображено на рисунке? 1 2

Какие виды отражения Вы знаете? Что изображено на рисунке?

Объясните, какую зависимость можно обнаружить с помощью данного рисунка?

Объясните, какую зависимость можно обнаружить с помощью данного рисунка?

Падающий луч Отраженный луч Запомни! Образование угла падения и угла отражения Перпендикуляр C В S Угол отражения Угол падения   Раздел двух сред М О N 15

Падающий луч

Отраженный луч

Образование угла падения и угла отражения

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *