Сколько энергии солнца доходит до земли
С олнце составляет 99,98% всей энергии нашей планеты (остальная энергия — геотермальная). Солнце состоит из водорода (71%), гелия (27%) и твердой материи (2%). Температура вблизи ядра приблизительно 16 000 000 градусов, а на его поверхности-фотосфере — около 5770 К. Мощность энергии, излучаемой Солнцем, составляет ~63 МВт с каждого квадратного метра его поверхности, всего около 3,72 х 10 20 МВт.
Е диницей измерения потока солнечной энергии в системе СИ является ватт на квадратный метр (Вт/м 2 ). При среднем расстоянии от Земли до Солнца — 150 000 000 км — плотность энергии солнечного излучения, которое достигает атмосферы Земли, составляет в среднем 1,367 КВт/м 2 . Эта величина называется солнечной постоянной. Различные процессы внутри Солнца и на его поверхности (солнечные пятна и вспышки) приводят к флуктуациям этой величины, но они не превышают 0,1%.
Р асстояние от Земли до Солнца изменяется из-за эллиптичности его орбиты Земли, поэтому солнечное излучение в верхней границе атмосферы на 6,6% больше 4 января (когда Земля ближе всего к Солнцу, в перигелии), чем 4 июля (когда Земля наиболее удалена от Солнца, в афелии). Эти даты не совпадают с датами зимнего и летнего солнцестояния потому, что ось вращения Земли наклонена к плоскости эклиптики на 23,5 о .
И з-за большого расстояния между Солнцем и Землей солнечное излучение, которое достигает верхней границы атмосферы, падает в виде почти параллельных лучей. Это излучение включает в себя ультрафиолетовое излучение (УФ), видимый свет и ближнее инфракрасное излучение (БИК). Максимальная интенсивность излучения приходится на диапазон видимого спектра — излучение с длиной волны от 400 до 800 нм. Интенсивность ультрафиолетового и инфракрасного излучения, приходящего от Солнца, очень мала, однако, когда Земля нагревается под действием солнечного излучения, она излучает ближнее и дальнее ИК излучение, которое, в свою очередь, поглощается и отражается газами, частицами и облаками в атмосфере.
П ри прохождении через атмосферу часть солнечного излучения достигает поверхности Земли, а часть рассеивается молекулами газов, аэрозольными частицами, каплями воды и кристаллами льда. Молекулы газов и аэрозоли отвечают за большую часть поглощения излучения. Рассеивание солнечного излучения на каплях воды и кристаллах льда происходит во всем спектральном диапазоне. Молекулы же в основном рассеивают излучение коротких длин волн, а аэрозоли — более длинных.
Рис. 2. Участки спектра излучения. Синим цветом обозначено длинноволновое УФ-излучение, желтым — средневолновое УФ-излучение, белым — видимый свет, кремовым — ближнее инфракрасное излучение и розовым — дальнее инфракрасное излучение. Синяя линия показывает солнечное излучение на земной поверхности, черная — чувствительность человеческого глаза, зеленая — спектральную чувствительность типичного фотоэлемента, красная — чувствительность пиранометра со стеклянным куполом и розовая — чувствительность пиргеометра. Для сравнения все приведено к условному максимуму 1,0.
Э ти процессы в значительной степени влияют на спектр излучения, которое достигает земной поверхности. Когда Солнце находится прямо над головой, оптическая масса атмосферы является минимальной и по определению имеет для этой местности атмосферную массу, равную 1,0. Когда Солнце опускается к горизонту, оптическая масс атмосферы увеличивается приблизительно в 11 раз и ее влияние на поглощение и рассеивание солнечного излучения становится значительно больше.
Н екоторые из этих процессов легко наблюдать. Молекулы атмосферы намного сильнее рассеивают короткие иволны, чем более длинные — рэлеевское рассеивание. Поэтому, когда Солнце находится высоко, небо выглядит синим. Когда же Солнце находится вблизи горизонта, короткие волны, проходя через толстый слой атмосферы, испытывают полное рассеивание, и небо по утрам и вечерам выглядит красным.
В безоблачный день поток солнечной энергии, достигающий земной поверхности в местный полдень, обычно находится в интервале от 700 до 1300 Вт/м 2 в зависимости от широты, долготы, высоты над уровнем моря и времени года.
Н аблюдения за солнечным излучением на земной поверхности ведут в двух диапазонах длин волн: коротковолновом излучении с длиной волны от 300 до 4000 нм и длинноволновом — от 4500 нм (4,5 мкм) до 40 мкм. Коротковолновое излучение включает ультрафиолетовое, видимое, и ближнее, инфракрасное излучение.
Ч асть солнечного излучения, которая достигает земной поверхности, отражается от нее, а другая часть поглощается. Снег и лед имеют высокую отражательную способность (альбедо), темные и/или неровные поверхности — более низкую. Часть излучения, которая поглощается земной поверхносьтю, излучается обратно в атмосферу в ближнем (инфракрасном) диапазоне. Углекислый газ (СО2), метан (СН4) и водяной пар (Н2О) в атмосфере способны поглощать это излучение, нагревая, в свою очередь, земную атмосферу. Это — так называемый «парниковый эффект». В целом же существует равновесие: Земля получает столько же солнечного излучения, сколько излучает обратно в Космос. Иначе Земля нагревалась бы или остывала.
Количество энергии получаемое от Солнца
Солнечная постоянная, представляет собой то количество электромагнитного излучения, которое доходит от Солнца на расстоянии 1 астрономической единицы (среднее расстояние от Земли до нашей звезды) и попадает перпендикулярно на определенную область. Измеренная спутниками, солнечная постоянная равна 1,366 киловатт на квадратный метр. Наша звезда испускает электромагнитное излучение по всему спектру, от радиоволн до инфракрасного, от видимого света до рентгеновских лучей.
Если бы мы могли сложить всю энергию этого излучения, то получили бы общее излучение Солнца.
Солнечная постоянная
Она является количеством излучения, которое попадает на область перпендикулярную к Солнцу. Фактически лучи, которые мы видим у поверхности Земли, являются малой долей от этой постоянной. Это потому, что атмосфера планеты блокирует некоторые длины волн.
В зависимости от вашего местоположения на планете, количество получаемого света разнится. Солнце излучает в 2 миллиарда раза больше энергии, получаемой на Земле.
Количество Солнечной радиации, получаемой Землей, также изменяется в зависимости от ее точки на орбите. Так как Земля имеет слегка эллиптическую орбиту, на ближайшей точке ее орбиты, количество получаемой энергии равно 1,413 кВт/м2. В ее наиболее удаленной точке, величина Солнечной радиации только 1,321 кВт/м2.
Похожие статьи
Понравилась запись? Расскажи о ней друзьям!
Сколько энергии солнца доходит до земли
Бог проявил щедрость,
когда подарил миру такого человека.
Светлане Плачковой посвящается
Издание посвящается жене, другу и соратнику, автору идеи, инициатору и организатору написания этих книг Светлане Григорьевне Плачковой, что явилось её последним вкладом в свою любимую отрасль – энергетику.
- Книга 1. От огня и воды к электричеству
- Книга 2. Познание и опыт — путь к современной энергетике
- Книга 3. Развитие теплоэнергетики и гидроэнергетики
- Книга 4. Развитие атомной энергетики и объединенных энергосистем
- Книга 5. Электроэнергетика и охрана окружающей среды. Функционирование энергетики в современном мире
Книга 1. От огня и воды к электричеству
- Книга 1. От огня и воды к электричеству
- ЧАСТЬ 1. Эволюция представлений о энерге
- Раздел 5. Начало использования солнечной
5.2. Потенциал солнечной энергии. Условия её эффективного использования
Солнце – специфический гидродинамический объект диаметром 1 390 000 км, образовавшийся из облака газа, в основном водорода. Температура его недр настолько высока, что обеспечивает синтез водорода в гелий. Этот синтез, происходящий в недрах Солнца, высвобождает энергию в виде высокочастотного электромагнитного излучения, которое, переизлучаясь, постепенно доходит до его поверхности. Излучение, достигающее в конечном итоге Земли, исходит из тонкого поверхностного слоя Солнца, называемого фотосферой (рис. 5.10). Электромагнитное излучение фотосферы Солнца распространяется в космическом пространстве со скоростью света (300 000 км/с) в виде расходящихся лучей (рис. 5.11). Мощность излучения Солнца (3,8·10 2 0 МВт) очень велика. Энергия, излучаемая Солнцем каждый день, является источником жизни на Земле. Она поддерживает в газообразном состоянии земную атмосферу, постоянно нагревает сушу и водоёмы, даёт энергию ветрам и водопадам, морским течениям и волнам, обеспечивает жизнедеятельность животных и растений. Часть солнечной энергии запасена в недрах Земли в виде каменного угля, нефти, природного газа и других полезных ископаемых. Всё это подчёркивает роль Солнца как первичного источника энергии. Рис. 5.10. Схема строения Солнца: 1 – ядро; 2 – конвективная зона; 3 – фотосфера Рис. 5.11. Прохождение солнечных лучей через атмосферу Среднее количество солнечной энергии, попадающей в атмосферу Земли, огромно – около 1,353 кВт/м 2 , или 178 000 ТВт. Гораздо меньшее её количество достигает поверхности Земли, а доля, которую можно использовать, ещё меньше. Тем не менее, солнечная энергия и возобновляемое сырьё представляют собой такой ресурсный потенциал, который намного превышает потенциал ископаемых ресурсов. Объём энергии, ежегодно даваемый Земле Солнцем, в 15 000 раз больше годового потребления атомной энергии и энергии из ископаемых источников. Одной Италии оно даёт в 6 раз больше энергии, чем используется в течение года во всём мире. Ежегодная производительность фотосинтеза флоры в 10 000 раз превышает годовую производительность химической промышленности всего мира. Это значит, что в перспективе есть возможность заменить весь потенциал ископаемых ресурсов ресурсами солнечной энергии. Иногда мы не вполне осознаём, что имеем дело с самым, может быть, феноменальным явлением природы: на нашу планету непрерывно низвергается нескончаемый поток энергии. Эта энергия доступна всем и каждому. Её практически неограниченное количество. Она экологична, ничего не загрязняет, ничего не нарушает, ни во что не врывается губительным диссонансом (за немногими исключениями). Она даёт жизнь всему сущему на Земле. Больше того, эта энергия даровая. Она разлита повсюду: бери, сколько хочешь, никаких вроде бы препятствий. Поток её постоянен, независимо от того, используем мы его или нет. В общем можно сказать, что это идеальная энергия. Тогда почему же вклад солнечного излучения в топливно-энергетический ба Если бы за последние тридцать лет на разработку получения солнечной энергии было затрачено столько же сил и средств, сколько на получение атомной энергии, то к 2000 году «солнечный ток» мог бы заменить атомный. К такому выводу пришли немецкие учёные.
Энергетическая отдача Солнца равнозначна сжиганию или превращению в энергию массы в количестве 4,2·10 6 т в секунду.
Земля, находящаяся на расстоянии 150 млн.км от Солнца, получает приблизительно 2 миллиардные доли его общего излучения.
Общее количество солнечной энергии, достигающей поверхности Земли за год, в 50 раз превышает всю энергию, которую можно получить из доказанных запасов ископаемого топлива, и в 35 000 раз превышает нынешнее ежегодное потребление энергии в мире. За неделю на территорию России поступает солнечная энергия, превышающая энергию всех российских ресурсов нефти, газа, угля и урана. ланс всех стран Земли ничтожен? Очевидно, чтобы всерьёз пустить его в дело и сделать этот вклад весомым, необходимо выполнить несколько главных условий. При всех достоинствах солнечной энергии её использование сегодня является самым затратным (рис. 5.12). Следовательно, надо совершенствовать существующие технологии преобразования солнечной энергии с целью увеличения их эффективности и снижения стоимости. Очень рассеянным, неплотным потоком приходит на Землю излучение нашего светила. Надо его как-то сгущать, искать эффективные способы его концентрации. Для создания солнечных орбитальных электростанций придётся научиться собирать в космосе гигантские и одновременно лёгкие конструкции. С панели площадью в 100 км 2 можно снимать мощность около 10 миллионов киловатт. Надо обеспечить передачу этой энергии на Землю, иметь многоразовые транспортные средства для доставки грузов на орбиту. Для получения фотоэлектрохимических солнечных элементов, эффективно абсорбирующих свет и имеющих приемлемые КПД, необходимо от научных разработок перейти к промышленному освоению и коммерческому применению наноструктурных технологий. Важное условие использования солнечной энергии – объединение в одном устройстве фотогальванических элементов с процессом электролиза с целью получения кислорода и водорода. Солнечная энергетика относится к наиболее материалоёмким видам производства энергии. Крупномасштабное её использование потребует разработки новых материалов, увеличения добычи сырья и роста трудовых ресурсов для его обогащения. Характеризуя потенциал солнечной энергии, нельзя не сказать о сенсационном сообщении журнала «Examiner»: люди могут питаться энергией Солнца. Так утверждает 663летний инженер3механик из Калькутты Ратан Манег. Начиная с 1995 г. он не пот3 ребляет твёрдой пищи. Чувство голода по3 давляет, впитывая глазами солнечную энергию. Манег убеждён, что люди способны изменить потребности своего организма очень простым способом – нужно смотреть на Солнце в первую часть рассвета или же на его закате, стоя на земле босыми ногами. Через несколько дней тренировок можно по3 чувствовать, как энергия солнечных лучей проникает в тело через глаза. Головной мозг начинает использовать свои незадейство3 ванные ресурсы, питая организм. По призна3 нию Манега, солнечная энергия избавляет человека не только от физических, но и от различных психических недугов. Этот фено3 мен уже три года изучает команда индий3 ских врачей, а недавно к ним присоединились американские ученые. Результаты его обсле3 дования специалистами из Университета Томаса Джефферсона в Филадельфии пока3 зали, что индус действительно абсолютно здоров. Рис. 5.12. Стоимость электроэнергии, получаемой в США за счет возобновляемых источников энергии Симптомы грядущей катастрофы видны в ухудшении экологической обстановки, безудержном росте населения, усилении политической напряжённости и в других направлениях. Становится очевидным, что подобное неуправляемое развитие цивилизации продолжаться не может. Одна из главнейших задач нового столетия – уменьшить техногенное влияние на климат Земли. При этом альтернатива – солнечная энергетика. Солнечные (как наземные, так и космические) электростанции, солнечные и термальные батареи, солнечные пруды, гелиохимия, солнечно-водородная энергетика, солнечные термовоздушные электростанции, системы биоконверсии – это всего лишь наиболее яркие вехи, штрихи, отдельные черточки того сценария, который пишется на наших глазах и который можно назвать завтрашним днём энергетики. К этому дню путь долог, непрост и тернист. Но у человечества нет другого выбора. Солнечная энергия с точки зрения экологии действительно идеальна, поскольку не нарушает равновесия в природе. Поэтому усилия мирового сообщества, задачи международного сотрудничества должны быть сконцентрированы и направлены на скорейшее преодоление этого пути к эре энергетического изобилия.
Системы солнечных электростанций, за счет своего к.п.д., будут иметь в будущем очень широкое коммерческое использование
- Введение
- ЧАСТЬ 1. Эволюция представлений о энергетическую суть природных явлений. История использования природных энергоресурсов
- Раздел 1. Солнце. Земля и ее эволюция. Вода и ветер
- 1.1. Солнце — объект поклонения человечества
- 1.2. Эволюция Земли. Роль Солнца, воды и ветра в развитии жизни на Земле
- 1.2.1. Планета Земля, развитие знаний о Земле
- 1.2.2. Внутреннее строение Земли
- 1.2.3. Стадии эволюции Земли
- 1.2.4. Геологические процессы, основные черты геологической истории Земли
- 1.2.5. Роль Солнца, воды и ветра в развитии жизни на Земле
- 3.1. Использование воды — важнейший фактор развития цивилизации
- 3.2. Водяные колеса и их эволюция
- 3.3. От водяного колеса до гидротурбины — развитие теории, создание и применение гидротурбин
- 4.1. Использование энергии ветра в период с древних времен до нового времени
- 4.2. Ветряки России и Украины
- 4.3. Ветряные мельницы США
- 4.4. Типы ветряных мельниц
- 4.5. Вклад науки в решение проблемы вітровикористання
- 4.6. Создание первых ветроэлектростанций
- 5.1. Взгляд на историю познания Солнечной системы и начало использования солнечной энергии
- 5.2. Потенциал солнечной энергии. Условия ее эффективного использования
- Раздел 6. Топливо как источник огня
- 6.1. Процесс горения
- 6.2. Круговорот углерода в природе
- 7.1. История открытия и использования ископаемого угля и его происхождение
- 7.1.1. История открытия и использования ископаемого угля
- 7.1.2. Происхождение ископаемого угля
- 7.2.1.Исходный органический материал
- 7.2.2. Физические свойства
- 7.2.3. Химические свойства
- 7.3.1. Международная классификация
- 7.3.2. Классификация углей по генетическим и технологическим параметрам
- 7.3.3. Международная кодификация угля
- 7.3.4. Промышленная классификация углей Украины
- 8.1. История открытия и использования нефти и газа и их происхождение
- 8.2. Химический состав и физические свойства
- 8.2.1. Химический состав и физические свойства нефти
- 8.2.2. Классификация нефтей
- 8.2.3. Химический состав и физические свойства газа
- 8.2.4. Метан угольных пластов
Энергия солнца на Земле
Источник солнечной энергии – Солнце, которое имеет примерный радиус в 695300 км и массы около 2×10 30 кг. Температура поверхности Солнца – около 6 000 o С, внутри Солнца – около 40 000 000 o С. В течение года Солнце излучает в космическое пространство около 1,3×10 24 Кал.
На верхней границе атмосфера Земли получает инсоляцию , равную 1,39 кВт•/м —2 , или 1,39×10 3 Дж•м —2 •с —1 . Это так называемая «солнечная постоянная» (eo), которую примем за 100%. Значение eo в действительности меняется в течение года: на ±1,5% из-за изменения потока солнечного излучения во времени; на ±4% из-за изменения расстояния между Землей и Солнцем в течение года (рис. 1). Кроме того, солнечное излучение меняется и по годам из-за изменения интенсивности по так называемым многолетним годовым циклам солнечной активности. Из них наиболее известен цикл Вольфа, равный 11 годам (рис. 2). Из сказанного следует, что для получения достаточно доверительных результатов фотоэлектрических расчетов требуется наличие длительных периодов наблюдений за солнечным излучением – не менее 25—50 лет в зависимости от вида расчетов.
Рисунок 1. Солнечная постоянная.
Рисунок 2. Цикл Фольфа.
Основные газы атмосферы (азот, кислород) почти не поглощают инсоляции, но вот переменные её составные части сильно поглощают именно длинноволновую часть излучения. Особенно хорошо она поглощается и рассеивается водяными парами, меньше — окислами азота и соединениями углерода, пылью и т. д. Большое значение в поглощении имеют углекислый газ и озон. При прохождении через атмосферу 25% тепловых лучей (инсоляции) рассеивается молекулами воздуха, пылью, водяными парами; эту часть называют «диффузным рассеянием». При этом 9% возвращается обратно в космос, т.е. остается так называемая рассеянная радиация неба, или противоизлучение, равное 16%. Далее, 33% от общей солнечной радиации составляет отражение от облаков и тоже уходит в космос. Таким образом, из солнечной постоянной для Земли теряется 42%. Поэтому говорят, что отражение, или альбедо Земли, равно 0,42 (или 42%). Следовательно, в атмосферу проникает только 58% от общего солнечного излучения. 15% общей инсоляции поглощается газами при прохождении через атмосферу, что вызывает частичное нагревание воздушной оболочки. То есть до земной поверхности доходит лишь 43% от общей инсоляции (солнечной постоянной, eo). Но из этих 43%, как мы уже говорили, 16% составляют рассеянную радиацию неба (или противоизлучение). В итоге из прямого солнечного излучения (солнечной постоянной) до поверхности Земли доходит только 27% (рис. 3, 4).
Рисунок 3. Рассеивание солнечной энергии.
Рисунок 4. Пути расходования солнечной энергии на поверхности Земли.
На всю поверхность Земли приходится около 0,85—1,2×10 14 кВт или 7,5—10×10 17 кВт×ч/год при среднем удельном поступлении солнечной инсоляции 200—250 Вт/м 2 или 1752—2190 кВт×ч/м 2 ×год. При этом диапазон удельного прихода солнечной энергии на Землю меняется весьма значительно, как во времени, так и по ее территории: 170—1000 Вт/м 2 или 17—100×10 4 Вт×ч/км 2 . Приход всех прочих видов энергии составляет всего 19 кВт/км 2 , что говорит об огромных возможностях солнечной энергии на Земле.
Если принять, что мощность всех видов энергоустановок на Земле составляет сегодня около 10 ТВт или 10×10 9 кВт, то мощность солнечной энергии превышает современные потребности человечества в тысячи раз.
Основной естественный потребитель солнечной энергии на Земле — зелёные растения (фотоавтотрофы). Пигменты фотоавтотрофов, поглощая кванты солнечных лучей, преобразуют их энергию в энергию разделенных электрических зарядов, что, в конечном счете, приводит к формированию химических связей высокоэнергетических органических соединений. Этот процесс составляет важнейший на Земле фотобиологический процесс — фотосинтез. Помимо того, что в ходе фотосинтеза запасается свободная энергия, процесс этот сопровождается выделением в атмосферу молекулярного кислорода, образующегося при фоторазложении воды. Благодаря фотосинтезу, в атмосфере поддерживается постоянное нужное для животных и человека содержание кислорода. Мир гетеротрофных организмов — преобладающая часть бактерий, животные и человек — потребляют для своей жизнедеятельности свободную энергию, запасаемую фотоавтотрофными организмами, способными осуществлять фотосинтетический процесс.
Фотосинтез фотоавтрофных организмов ЕДИНСТВЕННЫЙ источник кислорода на Земле. Кроме того, фотоавтотрофные организмы — НАЧАЛО И ОСНОВАНИЕ пищевой цепи на Земле (рис. 5).
Масштабы фотосинтеза на Земле грандиозны. При помощи энергии Солнца и СO2 атмосферы каждый год фотосинтезирующими организмами Земли создаётся около 2,4•10 10 т органического углерода. Еще выше продуктивность фотоавтотрофов Мирового океана, синтезирующих до 1,55•10 11 т углерода в составе органических веществ. Для сравнения укажем, что современный земной расход энергии человеком, который для этой цели использует нефть и каменный уголь, существенно ниже — 3,4•10 9 т органического углерода (рис. 6).
- Раздел 1. Солнце. Земля и ее эволюция. Вода и ветер