Почему генераторы переменного тока называют индукционными
Перейти к содержимому

Почему генераторы переменного тока называют индукционными

  • автор:

Получение и передача переменного электрического тока. Трансформатор

Рассмотрим ещё раз получение индукционного тока в катушке с помощью перемещения относительно неё постоянного магнита. Но теперь будем периодически двигать магнит вверх и вниз в течение нескольких секунд. Мы увидим, что при этом стрелка гальванометра отклоняется от нулевого деления то в одну, то в другую сторону. Это говорит о том, что модуль силы индукционного тока в катушке и направление этого тока периодически меняются.

  • Электрический ток, периодически меняющийся со временем по модулю и направлению, называется переменным током

В осветительной сети наших домов и во многих отраслях промышленности используется именно переменный ток.

В настоящее время для получения переменного тока используют в основном электромеханические индукционные генераторы, т. е. устройства, в которых механическая энергия преобразуется в электрическую. Индукционными они называются потому, что их действие основано на явлении электромагнитной индукции.

Генератор переменного тока

Генератор переменного тока: а — внешний вид; б — общий вид на электростанции вместе с паровой турбиной, приводящей ротор генератора во вращение

Неподвижная часть генератора, аналогичная контуру, называется статором, а вращающаяся, т. е. магнит, —ротором. В мощных промышленных генераторах вместо постоянного магнита используется электромагнит.

Статор промышленного генератора представляет собой стальную станину цилиндрической формы (станина — это основная несущая часть машины, на которой монтируются различные рабочие узлы, механизмы и пр.). Во внутренней его части прорезаются пазы, в которые витками укладывается толстый медный провод. В витках и индуцируется переменный электрический ток при изменении пронизывающего их магнитного потока.

Магнитное поле создаётся ротором (рис. а). Он представляет собой электромагнит: на стальной сердечник сложной формы надета обмотка, по которой протекает постоянный электрический ток. Ток к этой обмотке подводится через щётки и кольца от постороннего источника постоянного тока.

Схема генератора переменного тока

Рис. Схема генератора переменного тока

На рисунке б приведена схема генератора переменного тока. Штрихами показано примерное расположение линий индукции магнитного поля ротора. При вращении ротора какой-либо внешней механической силой создаваемое им магнитное поле тоже вращается. При этом магнитный поток, пронизывающий витки обмотки статора, периодически меняется, в результате чего в них индуцируется переменный ток.

На тепловых электростанциях ротор генератора вращается с помощью паровой турбины, на гидроэлектростанциях — с помощью водяной турбины.

На рисунке а изображён внешний вид мощного гидрогенератора, а на рисунке б схематично показано его устройство, где цифрой 1 обозначен статор, цифрой 2 — ротор, а цифрой 3 — водяная турбина.

Внешний вид и устройство мощного гидрогенератора

Рис. Внешний вид и устройство мощного гидрогенератора

Ротор гидрогенератора имеет не одну, а несколько пар магнитных полюсов. Чем больше пар полюсов, тем больше частота переменного электрического тока, вырабатываемого генератором при данной скорости вращения ротора. Поскольку скорость вращения водяных турбин обычно невелика, то для создания тока стандартной частоты используют многополюсные роторы.

Стандартная частота переменного тока, применяемого в промышленности и осветительной сети в России и многих других странах, равна 50 Гц. Это означает, что на протяжении 1 с ток 50 раз течёт в одну сторону и 50 раз в другую. В некоторых странах (например, США) стандартная частота переменного тока равна 60 Гц.

Современные высоковольтные ЛЭП

Современные высоковольтные ЛЭП

Сила тока, вырабатываемого генераторами переменного тока, меняется со временем по гармоническому закону (т. е. по закону синуса или косинуса). На рисунке показан график изменения силы тока i со временем t.

График зависимости силы переменного тока от времени

Рис. График зависимости силы переменного тока от времени

Для передачи электроэнергии от электростанций в места её потребления служат линии электропередачи (ЛЭП). Чем дальше от электростанции находится потребитель тока, тем больше энергии Q тратится на нагревание проводов и тем меньше доходит до потребителя:

Eпотребляемая = Eгенерируемая — Q

Уменьшение потерь электроэнергии при её передаче от электростанций к потребителям является важной задачей экономики.

Из закона Джоуля—Ленца (Q = I2Rt) следует, что уменьшить потери можно за счёт уменьшения сопротивления R проводов и силы тока I в них (что более эффективно, поскольку при уменьшении I в n раз Q уменьшается в n2 раз).

Сопротивление проводов будет тем меньше, чем больше площадь S их поперечного сечения и чем меньше удельное сопротивление ρ металла, из которого они изготовлены (так как R = ρl/S). Провода делают из меди или алюминия, так как среди относительно недорогих металлов они обладают наименьшим удельным сопротивлением. Увеличивать толщину проводов экономически невыгодно (ввиду увеличения расхода металла) и неудобно (из-за трудностей при их подвеске).

Поэтому существенного снижения потерь Q можно добиться только за счёт уменьшения силы тока I. Но при этом необходимо во столько же раз увеличить получаемое от генератора напряжение U, чтобы не снижать мощность тока Р (так как Р = UI1). Без такого преобразования силы тока и напряжения передача электроэнергии на большие расстояния становится невыгодной из-за существенных потерь.

Решение этой важнейшей технической задачи стало возможным только после изобретения трансформатора — устройства, предназначенного для увеличения или уменьшения переменного напряжения и силы тока.

Павел Николаевич Яблочков

Павел Николаевич Яблочков (1847—1894)
Русский электротехник и изобретатель. Изобрёл дуговую лампу («свеча Яблочкова»), сконструировал первый генератор переменного тока, трансформатор, сделал изобретения в области электрических машин и химических источников тока

Трансформатор был изобретён в 1876 г. русским учёным Павлом Николаевичем Яблочковым. В основе его работы лежит явление электромагнитной индукции. На рисунке а показан внешний вид трансформатора, а на рисунке б схематично изображены его основные части. Обратите внимание на то, что число витков в обмотках различно: в данном случае N2 > N1. Протекающий в первичной обмотке переменный ток создаёт (главным образом в сердечнике) переменное магнитное поле, которое, в свою очередь, порождает переменное электрическое поле. В результате действия этого поля на концах вторичной обмотки возникает переменное напряжение U2.

Внешний вид и схема устройства повышающего трансформатора

Рис. Внешний вид и схема устройства повышающего трансформатора

Величина U2 определяется из соотношения:

Значит, при N2 > N1 трансформатор будет повышающим (так как U2 > U1), а при N2 < N1 — понижающим (в данном случае U2 < U1).

Теперь вернёмся к вопросу о передаче электроэнергии от электростанции к месту её потребления. Напряжение, вырабатываемое генератором, обычно не превышает 25 кВ. А для оптимальной передачи электроэнергии на большие расстояния требуется напряжение порядка сотен киловольт. Поэтому ток с электростанции сначала подаётся на расположенную неподалёку повышающую трансформаторную подстанцию, где напряжение повышается до нескольких сотен киловольт (в большинстве случаев оно не превышает 750 кВ), и под таким напряжением подаётся в ЛЭП. Поскольку такое высокое напряжение не может быть предложено потребителю, то в конце линии его подают поочерёдно на несколько трансформаторных подстанций, понижающих напряжение до 380 или 220 В, а затем — на предприятия или в жилые дома.

Схема передачи электроэнергии от электростанции к потребителю

Схема передачи электроэнергии от электростанции к потребителю

Трансформаторы нашли широкое применение в быту. Например, при подзарядке сотового телефона имеющийся в зарядном устройстве трансформатор понижает напряжение, полученное из осветительной сети и равное 220 В, до 5,5 В, пригодного для телефона. В телевизоре имеется несколько трансформаторов (как понижающих, так и повышающих), поскольку для питания различных его узлов требуется напряжение от 1,5 В до 25 кВ.

Внешний вид силового масляного трансформатора

Внешний вид силового масляного трансформатора

К занятию прикреплен файл «Это интересно!». Вы можете скачать файл в любое удобное для вас время.

  • http://interneturok.ru/ru/school/physics/11-klass/
  • http://www.tepka.ru/fizika_9/42.html
  • http://www.youtube.com/watch?v=ejKYotjnV0Q
  • http://www.youtube.com/watch?v=I4G4fS-8GYM

Генератор переменного тока

В 1832-м году неизвестным изобретателем был создан первый однофазный синхронный многополюсный генератор переменного тока. Но в самых первых электронных устройствах применялся только постоянный ток, в то время как переменный ток долгое время не мог найти своего практического применения. Тем не менее, вскоре выяснили, что намного практичнее использовать не постоянный, а переменный ток, то есть тот ток, который периодически меняет свое значение и направление. Преимущества переменного тока, состоят в том, что его удобнее вырабатывать при помощи электростанций, генераторы переменного тока экономичнее и проще в обслуживании, чем аналоги, работающие на постоянном токе. Поэтому были собраны надежные электрические двигатели переменного тока, которые сразу нашли свое широкое применение в промышленных и бытовых сферах. Надо отметить, что благодаря существованию переменного тока, его особенным физическим явлениям, смогли появиться такие изобретения, как радио, магнитофон и прочая автоматика и электротехника, без которой сложно представить современную жизнь.

Устройство генератора переменного тока

Генератор переменного тока – это устройство, которые преобразует механическую энергию, в электрическую.

Генератор переменного тока

Состоит он из неподвижной части, которая называется статор или якорь (см. рисунок) и вращающейся части — ротор или индуктор. В генераторе переменного тока ротор — это электромагнит, который обеспечивает магнитное поле, которое передается на статор. На внутренней поверхности статора есть осевые впадины, так называемые пазы, в которых расположена обмотка переменного тока (проводник). Статор генератора изготавливается из 0.35 мм спрессованных стальных листов, которые изолированы покрытой лаком пленкой. Эти листы устанавливаются в станине устройства. Ротор крепится внутри статора и вращается посредством двигателя. Вал – одна из деталей, для передачи крутящего момента под действием расположенных на нём опор. На общем валу с генератором, располагается так называемый возбудитель постоянного тока, который питает постоянным током обмотки ротора. Аккумулятор в генераторе переменного тока выполняет функции стартерной батареи, которая имеет свойство накапливать и хранить электроэнергию при нехватке в отсутствии работы двигателя и при нехватке мощности, которую развивает генератор.

Применение генераторов переменного тока в жизни

В течении последних лет, популярность использования электростанций и генераторов переменного тока значительно возросла. Используются они как в промышленных, так и в бытовых сферах. Промышленные генераторы являются наилучшим вариантом для использования на производстве, в больницах, школах, магазинах, офисах, бизнес центрах, а так же на строительных площадках, значительно упрощая строительство в тех зонах, где электрификация полностью отсутствует. Бытовые генераторы, более практичные, компактные и идеально подходят для использования в коттедже и загородном доме. Генераторы переменного тока широко применяются в различных областях и сферах благодаря тому, что могут решить множество важных проблем, которые связаны с нестабильной работой электричества или полным его отсутствием.

Обслуживание

Практически любая дизельная электростанция в независимости от ее мощности (500 кВт) и производителя имеет 2 главные составляющие. Это генератор переменного тока и двигатель внутреннего сгорания. Так как поддерживать данные узлы необходимо в рабочем исправном состоянии, в ходе их эксплуатации нужен определенный перечень обязательных работ по их техническому обслуживанию. К сожалению, подавляющее большинство владельцев считает, что можно ограничиться лишь своевременной заменой масла и фильтра, при этом «техническое обслуживание» можно провести и самостоятельно. Но результатом этого зачастую становится полный отказ работы устройства. В результате чего, не сложно сделать вывод, что проще и дешевле, доверить оборудование профессионалам, которые благодаря знаниям и огромному опыту, смогут увеличить срок службы ДГУ и сократить расходы при аварийных ситуациях.

Дизельные электростанции со скидкой. Продажа

Вам нужна дешевая дизельная электростанция? Посмотрите наш каталог ДГУ по специальной цене.
Возможно, будет выгоднее купить дизельную электростанцию, чем брать ее в аренду.

Запросить коммерческое предложение

Нужна консультация отдела продаж или инженера для расчета проекта — звоните:

Тест по физике 9 класс
тест по физике (9 класс)

По теме: методические разработки, презентации и конспекты

Предмет: Физика Класс: 10 класс, Урок открытия нового знания (ОНЗ)

Предмет: физика Класс: 8 Тема урока: Расчет сопротивления проводников. Удельное сопротивление.

Предмет: физика Класс: 8 Тема урока: Расчет сопротивления проводников. Удельное сопротивление.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по учебной дисциплине «Физика» Класс: 10

КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ на 2021/2022 учебный год Предмет физика Класс 7.

КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕна 2021/2022 учебный годПредмет физикаКласс 7Рабочая программа по физике для общеобразовательных учреждений «Физика» 7-9 классы по учебникам А.В. Перышк.

КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ на 2021/2022 учебный год Предмет физика Класс 8.

Предмет физикаКласс 8Рабочая программа по физике для общеобразовательных учреждений «Физика» 7-9 классы по учебникам А.В. Перышкин, Е.М. Гутник.М.: Просвещение, 2015г. Учебник «Физик.

КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ на 2020/2021 учебный год Предмет физика Класс 9

КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕна 2020/2021 учебный годПредмет физикаКласс 9Рабочая программа по физике для общеобразовательных учреждений «Физика» 7-9 классы по учебникам А.В. .

РАБОЧАЯ УЧЕБНАЯ ПРОГРАММА ПРЕДМЕТ: ФИЗИКА КЛАСС: 7

РАБОЧАЯ УЧЕБНАЯ ПРОГРАММАПРЕДМЕТ: ФИЗИКАКЛАСС: 7.

Токи Фуко

Токи Фуко (в честь Фуко, Жан Бернар Леон) — это вихревые замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока. Вихревые токи являются индукционными токами и образуются в проводящем теле либо вследствие изменения во времени магнитного поля, в котором находится тело, либо вследствие движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или какую-либо его часть. Величина токов Фуко тем больше, чем быстрее меняется магнитный поток.

В отличие от электрического тока в проводах, текущего по точно определённым путям, Вихревые токи замыкаются непосредственно в проводящей массе, образуя вихреобразные контуры. Эти контуры тока взаимодействуют с породившим их магнитным потоком. Согласно правилу Ленца, магнитное поле В. т. направлено так, чтобы противодействовать изменению магнитного потока, индуцирующего эти В. т.

В. т. приводят к неравномерному распределению магнитного потока по сечению магнитопровода. Это объясняется тем, что в центре сечения магнитопровода намагничивающая сила В. т., направленная навстречу основному потоку, является наибольшей, так как эта часть сечения охватывается наибольшим числом контуров В. т. Такое «вытеснение» потока из середины сечения магнитопровода выражено тем резче, чем выше частота переменного тока и чем больше Магнитная проницаемость ферромагнетика. При высоких частотах поток проходит лишь в тонком поверхностном слое сердечника. Это вызывает уменьшение кажущейся (средней по сечению) магнитной проницаемости. Явление вытеснения из ферромагнетика магнитного потока, изменяющегося с большой частотой, аналогично электрическому Скин-эффекту и называемому магнитным скин-эффектом.

В соответствии с законом Джоуля — Ленца В. т. нагревают проводники, в которых они возникли. Поэтому В. т. приводят к потерям энергии (потери на В. т.) в магнитопроводах (в сердечниках трансформаторов и катушек переменного тока, в магнитных цепях машин).

Для уменьшения потерь энергии на В. т. (и вредного нагрева магнитопроводов) и уменьшения эффекта «вытеснения» магнитного потока из ферромагнетиков магнитопроводы машин и аппаратов переменного тока делают не из сплошного куска ферромагнетика (электротехнической стали), а из отдельных пластин, изолированных друг от друга. Такое деление на пластины, расположенные перпендикулярно направлению В. т., ограничивает возможные контуры путей В. т., что сильно уменьшает величину этих токов. При очень высоких частотах применение ферромагнетиков для магнитопроводов нецелесообразно; в этих случаях их делают из магнитодиэлектриков, в которых В. т. практически не возникают из-за очень большого сопротивления этих материалов.

При движении проводящего тела в магнитном поле индуцированные В. т. обусловливают заметное механическое взаимодействие тела с полем. На этом принципе основано, например, торможение подвижной системы в счётчиках электрической энергии, в которых алюминиевый диск вращается в поле постоянного магнита. В машинах переменного тока с вращающимся полем сплошной металлический ротор увлекается полем из-за возникающих в нём В. т. Взаимодействие В. т. с переменным магнитным полем лежит в основе различных типов насосов для перекачки расплавленного металла.

В. т. возникают и в самом проводнике, по которому течёт переменный ток, что приводит к неравномерному распределению тока по сечению проводника. В моменты увеличения тока в проводнике индукционные В. т. направлены у поверхности проводника по первичному электрическому току, а у оси проводника — навстречу току. В результате внутри проводника ток уменьшится, а у поверхности увеличится. Токи высокой частоты практически текут в тонком слое у поверхности проводника, внутри же проводника тока нет. Это явление называется электрическим скин-эффектом. Чтобы уменьшить потери энергии на В. т., провода большого сечения для переменного тока делают из отдельных жил, изолированных друг от друга.

В. т. применяются для пайки, плавки и поверхностной закалки металлов, а их силовое действие используется в успокоителях колебаний подвижных частей приборов и аппаратов, в индукционных тормозах (в которых массивный металлический диск вращается в поле электромагнитов) и т. п.

Материалы по теме:

  • Бессвинцовая пайка
  • Статическое электричество
  • Температура Кюри

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *