Какие виды космического электромагнитного излучения вам известны
Перейти к содержимому

Какие виды космического электромагнитного излучения вам известны

  • автор:

Космическое излучение: о чем нам не следует беспокоиться

×

Хотите узнать больше о деятельности МАГАТЭ? Подпишитесь на нашу ежемесячную электронную рассылку, чтобы быть в курсе самых важных новостей, получать аудио- и видеоматериалы и многое другое.

Что есть что в ядерной сфере
Лаура Хиль , Бюро общественной информации и коммуникации МАГАТЭ

Космическое излучение может быть галактическим и солнечным. Магнитосфера Земли отклоняет космические лучи и защищает нас от солнечных вспышек. (Изображение: Л. Хан/МАГАТЭ)

Космическое излучение — это и есть радиация в космосе. В этой статье мы выясним, что оно собой представляет, почему мы защищены от него, находясь на Земле, как оно может влиять на людей, выполняющих определенную работу, и как оно может способствовать развитию технологий лечения рака.

Что такое космические лучи?

Космические лучи представляют собой чрезвычайно высокоэнергетические субатомные частицы — в основном протоны и атомные ядра, сопровождаемые электромагнитными излучениями, — которые перемещаются в космосе, в конечном счете достигая поверхности Земли. Они движутся практически со скоростью света, составляющей приблизительно 300 000 км/с.

Откуда они берутся?

Космические лучи бывают двух видов: галактические и солнечные. Галактическое космическое излучение исходит от остатков сверхновых, образующихся в результате мощного взрыва на последних этапах эволюции массивных звезд, которые либо превращаются в черные дыры, либо разрушаются. Выделяемая при этих взрывах энергия ускоряет заряженные частицы за пределами нашей Солнечной системы, из-за чего они приобретают очень высокую проникающую способность, а их экранирование становится чрезвычайно трудной задачей. По сути, сверхновые действуют как огромные природные ускорители частиц. Земля постоянно подвергается воздействию галактического космического излучения.

Солнечное космическое излучение состоит из заряженных частиц, испускаемых Солнцем, — преимущественно электронов, протонов и ядер гелия. Часть этого излучения непрерывно исходит из короны Солнца, поэтому ученые стали называть его «солнечным ветром». Остальное излучение порождается событиями солнечных частиц — внезапными и спорадическими выбросами электрически заряженных частиц, сопровождающимися электромагнитными излучениями, которые возникают, когда магнитные поля на поверхности Солнца растягиваются и скручиваются. Словно резиновая лента, магнитные поля Солнца могут внезапно сжиматься, высвобождая огромную энергию, выброс которой может потенциально представлять угрозу для здоровья находящихся в космосе астронавтов. Сильные солнечные вспышки, хотя и случаются редко, могут в конечном счете приводить к нарушению радиосвязи и влиять на работу современных технологий связи и навигации на самой Земле.

Достают ли до нас космические лучи на Земле?

Земля экранирована магнитным полем, и оно заставляет заряженные частицы отклоняться от полюса к полюсу, создавая два гигантских пояса, напоминающие по форме бублик, в которых удерживаются электроны и протоны высоких энергий. Таким образом, магнитосфера отклоняет космические лучи и защищает нас от солнечных вспышек. Иногда космическое излучение все же достигает нас, но не причиняет никакого вреда, подобно другим слабым уровням излучения, которые регулярно присутствуют в нашей жизни. В среднем люди получают дозу излучения, составляющую около 3,5 миллизивертов в год. Примерно половина этого излучения происходит из искусственных источников, таких как рентгеновская съемка, маммография и КТ, а другая половина — из природных источников, в числе которых около 10% приходится на космическое излучение. Зиверт используется в качестве единицы измерения риска для здоровья вследствие облучения: доза в один зиверт предполагает 5,5% вероятность развития в конечном итоге радиационно-индуцированного рака в более поздний период жизни человека.

«Частицы космического излучения, проникающие в атмосферу на магнитных полюсах Земли, могут создавать поистине удивительные, красочные всполохи полярного сияния», — рассказывает Михаэль Хаек, специалист МАГАТЭ по внешнему дозиметрическому контролю. Джоан Файнмэн, астрофизик, которая посвятила большую часть своей жизни изучению полярного сияния, обнаружила, что эти магические явления, наблюдаемые преимущественно в высоких широтах вокруг Арктики и Антарктики, являются результатом столкновений между заряженными частицами солнечного ветра и газообразными компонентами атмосферы. За наиболее распространенный цвет полярного сияния, бледно-желтовато-зеленый, отвечают молекулы кислорода, в то время как взаимодействие частиц с азотом дает синий или пурпурно-красный цвет полярного сияния.

Достают ли они до нас, когда мы летаем?

Да. Хотя пассажиры самолетов испытывают повышенное воздействие космических лучей, особенно на больших высотах и широтах, доза облучения, которую они получают за один полет, совсем незначительна. Экипажи воздушных судов и часто летающие пассажиры подвержены воздействию радиации из космоса в больших дозах, в зависимости от того, как часто они летают. Доза облучения экипажа, выполняющего полеты преимущественно на малой высоте, как, например, в случае большинства летательных аппаратов на авиационном топливе, едва ли будет превышать один миллизиверт в год. Тем не менее, для экипажей, работающих на дальнемагистральных полярных маршрутах, годовая эффективная доза облучения может составлять до шести миллизивертов.

«В нормах безопасности МАГАТЭ предусмотрен специальный раздел, GSR-Part 3, раздел 5, в котором изложены возможные варианты действий государств-членов по сокращению радиационного облучения экипажей воздушных судов», — поясняет Тони Колган, руководитель Группы радиационной защиты МАГАТЭ. Количество летных часов для экипажей контролируется Международной ассоциацией воздушного транспорта (ИАТА), которая также устанавливает предельные дозы облучения, которым они могут подвергаться.

А как же космонавты?

Экипаж космического летательного аппарата получает еще более высокую дозу облучения. Космонавт, находящийся на борту космической станции, которая вращается вокруг Земли на орбите высотой 400 км, обычно подвергается облучению в дозах, превышающих половину миллизиверта в сутки. Таким образом, за 12 дней космонавты получают ту же дозу, что и экипаж самолета за год. Национальными космическими агентствами установлены предельные дозы облучения для космонавтов. Такие последствия для здоровья, как радиационно-индуцированный канцерогенез и некоторые реакции тканей, могли быть связаны с воздействием на космонавтов космического излучения, хотя из-за небольшого размера выборки количественная оценка подобных последствий затруднительна.

Можно ли извлечь какую-либо пользу из космического излучения на Земле?

«Удивительно, как понимание нами механизмов повреждения клеток вследствие высоких уровней космического излучения может помочь в развитии технологий, применяемых для лечения рака с использованием ускорителей тяжелых заряженных частиц», — говорит Михаэль Хаек. Благодаря своим уникальным свойствам пучки заряженных частиц — подобные тем, которые встречаются в космосе — могут разрушать глубоко расположенные опухоли, сводя к минимуму повреждения окружающих тканей. «Достижения в области ионной терапии, в свою очередь, позволят нам улучшить радиационную защиту в космосе и преодолеть нынешние ограничения в области прогнозирования рисков для здоровья при длительных космических полетах», — объясняет г-н Хаек.

Радиоактивность вокруг нас: естественная и искусственная радиоактивность

Когда мы слышим слово «радиация», то сразу представляем себе атомные электростанции, оружие массового поражение или радиоактивные отходы. Однако, это однобокое видение. Радиация, как правило, незаметна, и встречается она везде. Вопрос только в каких количествах? В целом, все источники радиации на планете можно разделить на естественные (космическое излучение, газы, радиоизотопы) и искусственные (причиной появления которых стал человек). Определить уровень такой радиации поможет дозиметр EcoLifePro1 .

Естественная радиоактивность

Естественная радиация была всегда: до появления человека, и даже нашей планеты. Радиоактивно всё, что нас окружает: почва, вода, растения и животные. В зависимости от региона планеты уровень естественной радиоактивности может колебаться от 5 до 20 микрорентген в час. По сложившемуся мнению, такой уровень радиации не опасен для человека и животных, хотя эта точка зрения неоднозначна, так как многие ученые утверждают, что радиация даже в малых дозах приводит к раку и мутациям. Правда, в связи с тем, что повлиять на естественный уровень радиации мы практически не можем, нужно стараться максимально оградить себя от факторов, приводящих к значительному превышению допустимых значений.

Откуда же берется естественная радиоактивность? Существует три основных источника:

1. Космическое излучение и солнечная радиация — это источники колоссальной мощности, которые в мгновение ока могут уничтожить и Землю, и всё живое на ней. К счастью, от этого вида радиации у нас есть надёжный защитник — атмосфера. Впрочем, интенсивная человеческая деятельность приводит к появлению озоновых дыр и истончению естественной оболочки, поэтому в любом случае следует избегать воздействия прямых солнечных лучей. Интенсивность влияния космического излучения зависит от высоты над уровнем моря и широты. Чем выше Вы над Землей, тем интенсивнее космическое излучение, с каждой 1000 метров сила воздействия удваивается, а на экваторе уровень излучения гораздо сильнее, чем на полюсах.

Вспышки на солнце — один из источников «естественного» радиационного фона.

Вспышки на солнце — один из источников «естественного» радиационного фона.

Ученые отмечают, что именно с проявлением космической радиации связаны частые случаи бесплодия у стюардесс, которые основное рабочее время проводят на высоте более десяти тысяч метров. Впрочем, обычным гражданам, не увлекающимися частыми перелетами, волноваться о космическом излучении не стоит.

Уровень радиации в салоне самолета на высоте 10 000 метров превышает естественный в 10 раз.

Уровень радиации в салоне самолета на высоте 10 000 метров превышает естественный в 10 раз.

2. Излучение земной коры. Помимо космического излучения радиоактивна и сама наша планета. В её поверхности содержится много минералов, хранящих следы радиоактивного прошлого Земли: гранит, глинозём и т.п. Сами по себе они представляют опасность лишь вблизи месторождений, однако человеческая деятельность ведёт к тому, что радиоактивные частицы попадают в наши дома в виде стройматериалов, в атмосферу после сжигания угля, на участок в виде фосфорных удобрений, а затем и к нам на стол в виде продуктов питания. Известно, что в кирпичном или панельном доме уровень радиации может быть в несколько раз выше, чем естественный фон данной местности. Таким образом, хоть здание и может в значительной мере уберечь нас от космического излучения, но естественный фон легко превышается от использования опасных материалов. Уберечься от таких «сюрпризов» можно, только используя дозиметры. По мнению специалистов www.dozimetr.biz, это единственный способ померить уровень радиации в бытовых условиях и не приобретать опасные с радиационной точки зрения материалы.

Соотношение естественных источников радиации.

Соотношение естественных источников радиации.

3. Радон — это радиоактивный инертный газ без цвета, вкуса и запаха. Он в 7,5 раз тяжелее воздуха, и, как правило, именно он становится причиной радиоактивности строительных материалов. Радон имеет свойство скапливаться под землей в больших количествах, на поверхность же он выходит при добыче полезных ископаемых или через трещины в земной коре.

Источники попадания радона в дома и квартиры.

Источники попадания радона в дома и квартиры.

Радон активно поступает в наши дома с бытовым газом, водопроводной водой (особенно, если её добывают из очень глубоких скважин), или же просто просачивается через микротрещины почвы, накапливаясь в подвалах и на нижних этажах. Снизить содержание радона, в отличие от других источников радиации, очень просто: достаточно регулярно проветривать помещение и концентрация опасного газа уменьшится в несколько раз.

Накопление радона в разных комнатах.

Накопление радона в разных комнатах.

Искусственная радиоактивность

В отличие от естественных источников радиации, искусственная радиоактивность возникла и распространяется исключительно силами людей. К основным техногенным радиоактивным источникам относят ядерное оружие, промышленные отходы, АЭС, медицинское оборудование, предметы старины, вывезенные из «запретных» зон после аварии Чернобыльской АЭС, некоторые драгоценные камни.

Источники попадания радиации в организм человека.

Источники попадания радиации в организм человека.

Радиация может попадать в наш организм как угодно, часто виной этому становятся предметы, не вызывающие у нас никаких подозрений. Единственный способ обезопасить себя — купить дозиметр радиации . Этот миниатюрный прибор окажет Вам неоценимую услугу: Вы всегда сможете самостоятельно контролировать безопасность членов своей семьи, не доверяя «уловкам» продавцов стройматериалов, антиквариата или торговцам на рынке, ручающимся за безопасное происхождение и экологическую чистоту своего товара. Мы сами ответственны за свою жизнь и здоровье. Защитите себя от радиации!

Источники радиоактивного облучения среднестатистического россиянина за год.

Источники радиоактивного облучения среднестатистического россиянина за год.

Загадочные частицы: что ученые знают о космических лучах

Фото: Pexels

Люди всегда стремились как можно лучше узнать Вселенную. Но, поскольку полеты к звездам долго оставались чем-то из разряда фантастики, человечество научилось пользоваться подсказками, которые нам дает сам космос

Что такое космические лучи?

Кроме электромагнитного излучения и гравитационных волн, на Землю каждую секунду прилетает множество космических частиц. Их называют космическими лучами. Северное сияние, охота на которое в последние годы стала настоящим трендом — тоже частицы, прилетевшие из космоса, а именно от Солнца. Однако ученым интересно изучать те лучи, которые достигают планеты из-за пределов Солнечной системы.

Что такое космические лучи и почему у них так много энергии?

  • протоны;
  • электроны;
  • позитроны;
  • антипротоны;
  • ядра элементов.

Как ученые открыли космические лучи

Ученые далеко не сразу поняли, что является источником это излучения, земная кора или космос. Чтобы ответить на этот вопрос, была проведена серия экспериментов.

Первый эксперимент провел австрийский и американский физик Виктор Гесс, получивший за открытие космических лучей Нобелевскую премию в 1936 году. Его идея была проста: сесть в гондолу воздушного шара и лететь вверх, периодически замеряя количество загадочных частиц. Если их будет становиться все больше, значит, эти частицы прилетают из космоса.

Фото:Сергей Савостьянов / ТАСС

Второй эксперимент менее известен и был проведен немного позже, в Италии. Его идея такова: чтобы понять, является ли источником загадочных частиц земная кор, необходимо от нее удалиться на некое расстояние и также замерить количество частиц. При этом необязательно лететь вверх, достаточно сесть в лодку и уплыть на ней как можно дальше от берега. Чем глубже больше будет толща воды, тем дальше земная кора.

В результате серии таких экспериментов ученые пришли к выводу, что поток частиц не изменяется, как бы глубоко ни находилось дно. Значит, чем бы ни являлись эти частицы, их точно излучает не земная кора.

Откуда у космических частиц столько энергии?

Этот вопрос в науке оказался вторым по степени важности. Особенно в первой половине XX века, когда люди еще не умели строить мощных ускорителей, а эксперименты проводить хотелось. Проблема в том, что «вручную» ускорить частицы до таких высоких значений крайне трудно: их энергия в сотни миллионов раз больше, чем энергия частиц в Большом адронном коллайдере.

К примеру, самые сильные космические лучи обладают такой же энергией, как теннисный мяч при подаче профессионального теннисиста. Для микрочастицы это очень много. Этой энергии вполне хватает, чтобы выводить из строя приборы на земной орбите.

Но откуда берется эта огромная энергия в космосе, долго оставалось загадкой. Ученым было ясно одно: эти загадочные космические «ускорители» находится точно не в нашей Галактике.

Галактика Млечный Путь, как и все прочие, обладает магнитным полем. Частицы космических лучей это поле «чувствуют», а значит, двигаются в нем по искривленным траекториям. Насколько магнитное поле может искривить траекторию частицы, зависит от ее энергии: чем выше энергия частицы, тем труднее заставить ее отклониться от изначального пути. Поэтому частицы относительно небольшой энергии легко «запутываются» в галактическом магнитном поле и накапливаются там, долго не покидают Галактику. А частицы самой высокой энергии улетают быстро, фактически не замечая магнитного поля.

Откуда прилетают космические лучи?

Казалось бы, задача простая: зарегистрировать вспышку в небе — свидетельство о прилете космической частицы, — посмотреть на нее через телескоп и понять, что является ее источником. Но оказалось, что это далеко не так просто.

Преодолевая миллиарды световых лет, даже частицы очень высокой энергии оказываются чувствительными к влиянию магнитных полей различных космических объектов и потому немного сбиваются со своей траектории. Поэтому нельзя узнать точно, откуда они прилетают.

Фото:Unsplash

Впрочем, ученые нашли способ решить эту задачу: они стали наблюдать за другими частицами — нейтрино. Их особенность заключается в том, что они совсем не чувствительны к влиянию магнитного поля. И вполне вероятно, что нейтрино рождаются в тех же местах, где и ускоряются космические лучи сверхвысокой энергии.

Нейтрино высоких энергий регистрируют с помощью детекторов:

  • IceCube — на антарктической станции Амундсен-Скотт,
  • Байкальского нейтринного детектора (Baikal-GVD) — на дне озера Байкал,
  • ANTARES — в Средиземном море.

Нейтринные детекторы регистрируют довольно большое количество частиц высоких энергий. Это помогло обнаружить интересные совпадения, когда астрономы видели вспышку в гамма-диапазоне и избыток нейтрино высокой энергии на установке IceCube — и это происходило одновременно. Это значит, что можно почти наверняка утверждать, что источник гамма-излучения является одновременно и источником нейтрино высоких энергий. Не исключено, что такие объекты и ускоряют космические лучи высоких энергий. Кстати, одна из гипотез: эти «ускорители» могут быть активными ядрами галактик.

Каждая галактика имеет в центре черную дыру. Эта черная дыра притягивает вещество. Вещество, попадая в черную дыру, часто образует диск вокруг. Лишнее вещество из внутренней части этого диска выбрасывается в виде двух струй — джетов. Теоретически они могут быть очень хорошим источником частиц высокой энергии и космических лучей.

Фото:NASA/JPL-Caltech

Как космические лучи помогают изучать Солнце

Поскольку интенсивность потока космических лучей тесно связана с солнечной активностью, с их помощью ученые могут изучать Солнце на масштабе многих сотен световых лет. Для этого есть два способа:

  1. Космические лучи провоцируют появление новых химических элементов (например, бора и бериллия) — они образуются в результате реакции скалывания из ядер других элементов, прилетевших на Землю.
  2. Частицы космических лучей взаимодействуют с веществом атмосферы и рождают редкие изотопы. Эти изотопы оседают на поверхность, и ученые могут обнаруживать их во льду или в спилах деревьев.

Фото:Rodion Kutsaev / Unsplash

Опасны ли космические лучи для человека?

Хоть частицы из космоса могут выводить из строя технику на орбите, для человека они не представляют особой опасности.

Человечество от космических лучей надежно защищает атмосфера Земли и Солнце. Чем выше активность Солнца, тем меньше космических лучей попадает к нам из Галактики и внегалактического пространства.

Впрочем, некоторое количество радиации из космоса попадает на Землю: космические лучи все-таки создают небольшой уровень радиоактивности. Однако даже регулярные авиаперелеты, если вы не член экипажа и не летаете ежедневно, не слишком вредят здоровью. Более того, краткосрочное радиоактивное облучение не нанесет существенный урон даже космическим туристам.

Скорее, опаснее была бы обратная история: если бы космических лучей вдруг не стало. Это привело бы к эффекту дистиллированной воды, то есть полному исчезновению естественного радиоактивного фона. Такое обстоятельство, конечно, уменьшило бы количество мутаций в нашей ДНК, но, как известно, мутации бывают не только вредными, но и полезными. В конце концов, это важная часть человеческой эволюции.

Какие виды космического электромагнитного излучения вам известны

Избежать облучения ионизирующим излучением невозможно. Жизнь на Земле возникла и продолжает развиваться в условиях постоянного облучения. Радиационный фон Земли складывается из трех компонентов :
1. космическое излучение;
2. излучение от рассеянных в земной коре, воздухе и других объектах внешней среды природных радионуклидов;
3. излучение от искусственных (техногенных) радионуклидов.
Облучение по критерию месторасположения источников излучения делится на внешнее и внутреннее. Внешнее облучение обусловлено источниками, расположенными вне тела человека. Источниками внешнего облучения являются космическое излучение и наземные источники. Источником внутреннего облучения являются радионуклиды, находящиеся в организме человека.

6.1. Космическое излучение

Космическое излучение складывается из частиц, захваченных магнитным полем Земли, галактического космического излучения и корпускулярного излучения Солнца. В его состав входят в основном электроны, протоны и альфа-частицы. Это так называемое первичное космическое излучение, взаимодействуя с атмосферой Земли, порождает вторичное излучение. В результате на уровне моря излучение состоит почти полностью из мюонов (подавляющая часть) и нейтронов.
Поглощенная мощность дозы космического излучения в воздухе на уровне моря равна 32 нГр/час и формируется в основном мюонами. Для нейтронов на уровне моря мощность поглощенной дозы составляет 0.8 нГр/час и мощность эквивалентной дозы составляет 2.4 нЗв/час. За счет космического излучения большинство населения получает дозу, равную около 0.35 мЗв в год.
Космическому внешнему облучению подвергается вся поверхность Земли. Однако облучение это неравномерно. Интенсивность космического излучения зависит от солнечной активности, географического положения объекта и возрастает с высотой над уровнем моря. Наиболее интенсивно оно на Северном и Южном полюсах, менее интенсивно в экваториальных областях. Причина этого — магнитное поле Земли, отклоняющее заряженные частицы космического излучения. Наибольший эффект действия космического внешнего облучения связан с зависимостью космического излучения от высоты (рис.4).
Солнечные вспышки представляют большую радиационную опасность во время космических полетов. Космические лучи, идущие от Солнца, в основном состоят из протонов широкого энергетического спектра (энергия протонов до 100 МзВ), Заряженные частицы от Солнца способны достигать Земли через 15-20 мин после того, как вспышка на его поверхности становится видимой. Длительность вспышки может достигать нескольких часов.

Величина дозы радиоактивного облучения, получаемая человеком, зависит от географического местоположения, образа жизни и характера труда. Например на высоте 8 км мощность эффективной дозы составляет 2 мкЗв/час, что приводит к дополнительному облучению при авиаперевозках.
При трансконтинентальном перелете на обычном турбовинтовом самолете, летящем со скоростью ниже скорости звука (Тполета ≈ 7.5 часа), индивидуальная доза, получаемая пассажиром (50 мкЗв), на 20 % больше, чем доза, полученная пассажиром сверхзвукового самолета (Тполета ≈ 2.5 часа) (40 мкЗв), хотя последний подвергается более интенсивному облучению из-за большей высоты полета. Коллективная эффективная доза от глобальных авиаперевозок достигает 10 4 чел-Зв, что составляет на душу населения в мире в среднем около 1 мкЗв за год, а в Северной Америке около 10 мкЗв.

6.2. Космогенные радионуклиды

В результате ядерных реакций, идущих в атмосфере (а частично и в литосфере) под влиянием космических лучей, образуются радиоактивные ядра — космогенные радионуклиды. Например

n + 14 N 3 H + 12 C , n + 14 N p + 14 C

В создание дозы наибольший вклад вносят 3 H, 7 Be, 14 C и 22 Na которые поступают вместе с пищей в организм человека (табл.16)

Взрослый человек потребляет с пищей 95 кг углерода в год при средней активности на единицу массы углерода 230 Бк/кг. Суммарный вклад космогенных радионуклидов в индивидуальную дозу составляет около 15 мкЗв/год.

6.3. Внешнее облучение от радионуклидов
земного происхождения

В настоящее время на Земле сохранилось 23 долгоживущих радиоактивных элемента с периодами полураспада от 10 7 лет и выше. Физические характеристики некоторых из них представлены в таблице 17.

В трех радиоактивных семействах: урана ( 238 U), тория ( 232 Th) и актиния ( 235 Ас) в процессах радиоактивного распада постоянно образуется 40 радиоактивных изотопов. Средняя эффективная эквивалентная доза внешнего облучения, которую человек получает за год от земных источников, составляет около 0.35 мЗв, т.е. чуть больше средней индивидуальной дозы, обусловленной облучением из-за космического фона на уровне моря.
Однако уровень земной радиации неодинаков в различных районах. Так, например, в 200 километрах к северу от Сан-Пауло (Бразилия) есть небольшая возвышенность, где уровень радиации в 800 раз превосходит средний и достигает 260 мЗв в год. На юго-западе Индии 70 000 человек живут на узкой прибрежной полосе, вдоль которой тянутся пески, богатые торием. Эта группа лиц получает в среднем 3.8 мЗв в год на человека. Как показали исследования, во Франции, ФРГ, Италии, Японии и США около 95% населения живут в местах с дозой облучения от 0.3 до 0.6 мЗв в год. Около 3% получает в среднем 1 мЗв в год и около 1.5% более 1.4 мЗв в год.
Если человек находится в помещении, доза внешнего облучения изменяется за счет двух противоположно действующих факторов:
1) Экранирование внешнего излучения зданием.
2) Облучение за счет естественных радионуклидов, находящихся в материалах, из которого построено здание.
В зависимости от концентрации изотопов 40 К, 226 Ra и 232 Th в различных строительных материалах мощность дозы в домах изменяется от 4·10 -8 до 12·10 -8 Гр/ч. В среднем в кирпичных, каменных и бетонных зданиях мощность дозы в 2-3 раза выше, чем в деревянных. В табл. 18 приведены данные о фоновом облучении в некоторых городах.

Среднегодовые дозы внешнего фонового облучения в некоторых городах
Город Среднегодовая доза, мкГр
Алма-ата 1600 ± 100
Астрахань 800 ± 60
Вильнюс 1000 ± 60
Ереван 750 ± 60
Кишинев 600 ± 20
Москва 900 ± 50
Новосибирск 800 ± 30
Рига 1100 ± 110
Санкт-Петербург 1200 ± 80
Таллин 900 ± 50
Якутск 700 ± 60
6.4. Внутреннее облучение от радионуклидов
земного происхождения

В организме человека постоянно присутствуют радионуклиды земного происхождения, поступающие через органы дыхания и пищеварения. Наибольший вклад в формирование дозы внутреннего облучения вносят 40 К, 87 Rb, и нуклиды рядов распада 238 U и 232 Th (табл.19).
Средняя доза внутреннего облучения за счет радионуклидов земного происхождения составляет 1.35 мЗв/год. Наибольший вклад (около 3/4 годовой дозы) дают не имеющий вкуса и запаха тяжелый газ радон и продукты его распада. Поступив в организм при вдохе, он вызывает облучение слизистых тканей легких. Радон высвобождается из земной коры повсеместно, но его концентрации в наружном воздухе существенно различается для различных точек Земного шара. Однако большую часть дозы облучения от радона человек получает, находясь в закрытом непроветриваемом помещении. В зонах с благоприятным климатом концентра дня радона в закрытых помещениях в среднем примерно в 8 раз выше, чем в наружном воздухе. Источниками радона являются также строительные материалы. Так, например, большой удельной радиоактивностью обладают гранит и пемза, кальций-силикатрий, шлак и ряд других материалов. Радон проникает в помещение из земли и через различные трещины в межэтажных перекрытиях, через вентиляционные каналы и т.д. Источниками поступления радона в жилые помещения являются также природный газ и вода (таблица 20).

Среднегодовая эффективная эквивалентная доза внутреннего облучения
Радионуклид,
тип излучения
Период полураспада Среднегодовая эффективная эквиваленетая доза мкЗв
40 К (β,γ) 1.4·10 9 лет 180
87 Rb (β) 4.8·10 10 лет 6
210 Po (α) 160 сут 130
220 Rn (α) 54 с 170 — 220
222 Rn (α) 3.8 сут 800 — 1000
226 Ra (α) 1600 лет 13

Доля домов, внутри которых концентрация радона и его ядерных продуктов равна от 10 3 до 10 4 Бк/см 3 , составляет от 0.01 до 0.1% в различных странах. Это означает, что значительное число людей подвергаются заметному облучению из-за высокой концентрации радона внутри домов, где они живут.
В качестве удобрений ежегодно используются несколько десятков млн. тонн фосфатов. Большинство разрабатываемых в настоящее время фосфатных месторождений содержит уран, присутствующий в довольно высокой концентрации. Содержащиеся в удобрениях радиоизотопы проникают из почвы в пищевые продукты, приводят к повышению радиоактивности молока и других продуктов питания.
Таким образом, эффективная доза от внутреннего облучения за счет естественных источников (1.35 мЗв/год) в среднем примерно в два раза превышает дозу внешнего облучения от них (0.65 мЗв/год). Следовательно, суммарная доза внешнего и внутреннего облучения от естественных источников радиации в среднем равна 2 мЗв/год. Для отдельных контингентов населения она может быть выше. Причем максимальное превышение над средним уровнем может достигать одного порядка.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *