Как определить параметры лазерного диода
Перейти к содержимому

Как определить параметры лазерного диода

  • автор:

Способы проверки лазера.

Существует способ проверки рабочего тока лазерного диода, который заключается в измерении падения напряжения на резисторе, включенном в цепь эмиттера лазер-драйвера. Зная сопротивление этого резистора, легко получить рабочий ток LD. Рекомендуется следующий порядок проведения проверки: подключить вольтметр мультиметра к эмиттерному резистору, включить принтер, снять показания вольтметра, затем выключить принтер и отключить мультиметр. Касаться щупами измерительных приборов выводов лазерного диода не допускается. Не допускается также использование омметра в цепях LD. Многие активные элементы устройства восприимчивы к статическому электричеству, особенно это относится к полупроводниковым лазерам. Такие компоненты имеют название ESD (Electro Static Discharge). При работе с ними необходимо, чтобы рабочее место и жало паяльника были надежно заземлены. Кроме этого необходимо помнить, что полупроводниковые инжекционные лазеры очень критичны даже к кратковременным выбросам отрицательного напряжения и могут легко выйти из строя при небольших обратных напряжениях. В ряде устройств их даже шунтируют быстродействующими импульсными диодами, которые подключают параллельно.
Одним из направлений в развитии полупроводниковых лазеров является снижение порогового и рабочего токов накачки лазера, а также снижение зависимости его параметров излучения от температуры. Ведутся работы по созданию инжекционных лазеров на основе квантоворазмерных структур InGaP/InGaAsP с длиной волны излучения 1,02-1,1 мкм. Применение этой структуры позволит получить минимальные изменения выходной мощности ( Для измерений и проверки функционирования используется в основном та же самая измерительная аппаратура, что и при обслуживании обычных аналоговых устройств. Цифровые и аналоговые сигналы или постоянные напряжения измерить и проконтролировать с помощью двухлучевого осциллографа, частотомера и мультиметра, но желательно использовать те приборы и инструменты, которые рекомендованы фирмами-изготовителями в сервисных инструкциях.
В большинстве устройств лазерный диод имеет отдельный (независимый) источник питания и схемы управления питанием. Чтобы LD начал излучать, сила тока, протекающего через него, должна достичь определенной величины. По достижении порогового значения лазерный диод начинает работать стабильно и генерирует постоянное световое излучение. Максимальный ток возбуждения лазерных диодов обычно составляет 40-70 мА (у некоторых диодов до 100 мА). При увеличении тока возбуждения резко возрастает мощность луча лазера, и возникает опасность быстрого разрушения лазера. Ток 150 мА разрушает любые лазерные диоды. Лазерные диоды LD чувствительны к колебаниям температуры окружающей среды и сильно реагируют на изменение питающего тока. Для обеспечения безопасности работы LD необходимо постоянно контролировать эмиссию светового потока с лазерного диода.

Автоматический контроль питания ILD осуществляется применением схем с отрицательной обратной связью, когда при уменьшении мощности лазерного луча увеличивается ток возбуждения LD,а увеличение мощности лазерного луча LD вызывает обратный процесс (система автоматического регулирования мощности лазерного луча). Мощность излучения лазерного диода контролируется монитор-фотодиодом и поддерживается на постоянном уровне цепями автоматического управления мощностью (в принципиальных схемах встречается также аббревиатура ALPC — Automatic Laser Power Control). Часть излучения лазерного диода (LD) попадает на монитор-фотодиод (MD), который преобразует излучение в электрический сигнал (рис. 1). На рис. 1 используются следующие обозначения сигналов: LDON — сигнал включения цепей АРС, LD — выход цепей управления мощностью лазерного диода, LPD — вход сигнала монитор-фотодиода.

QIP Shot - Image: 2016-10-12 12:07:07

Рис. 1. Фрагмент принципиальной схемы автоматического управления мощностью LD.

При увеличении тока лазерного диода будет увеличиваться интенсивность его излучения, в результате этого будет увеличиваться ток через монитор-фотодиод. При этом цепи АРС будут подзапирать транзистор Q101, задающий рабочий ток ILD. При уменьшении интенсивности излучения произойдет обратный процесс. Транзистор, задающий рабочий ток, в принципиальных схемах обычно называется лазер-драйвер или для него используют название LASER POWER CONTROL. Как уже отмечалось выше, при выполнении ремонтных работ, измерение рабочего тока лазерного диода производится косвенным образом путем измерения падения напряжения на резисторе в цепи эмиттера лазер-драйвера (резистор R101 номиналом 12 Ом). Зная номинал этого резистора, легко вычислить рабочий ток ILD (I=U/R). Фирмы-производители рекомендуют следующий порядок проведения измерения:
— отключить устройство от электропитания;
— подключить мультиметр к резистору в цепи эмиттера лазер-драйвера;
— включить устройство и произвести измерение;
— отключить устройство;
— отключить мультиметр;
— произвести подсчет рабочего тока ILD по падению напряжения на резисторе и сравнить его с номинальным током, указанном на этикетке.
Падение напряжения на резисторе, деленное на номинал этого резистора, должно соответствовать току 47,4 мА ±6%.
Лазерный диод является частью оптической системы, и большая часть фирм-изготовителей при неисправности рекомендует замену всего узла. Оптика — главная и дорогостоящая часть и поэтому, конечно, требует внимания. Линзовые поверхности должны быть чистыми и защищенными от попадания влаги.
Необходимо учитывать, что при попадании из холодного помещения в теплое или в помещение с повышенной влажностью на линзах оптического звукоснимателя может конденсироваться влага, присутствие которой отрицательно влияет на нормальную работу. Поэтому следует тщательно протереть объектив, не трогая при этом остальные линзы оптической системы. Для испарения влаги нужно оставить во включенном состоянии примерно на один час.
Хотя лазерный луч невидим, тем не менее, рассеяние лазерного пучка можно наблюдать на объективе (линза как бы светится при включении лазерного диода). В большинстве случаев остаются работоспособными, а неисправности появляются либо в механических узлах привода, либо вследствие оседания пыли на поверхность линзы лазерного излучателя. Следует обратить внимание на поверхность линзы лазерного излучателя, которую необходимо протереть с особой осторожностью ватой, смоченной спиртом.
Если отсутствует свечение лазера или его интенсивность недостаточна. Возможно, что с течением времени эмиссионная способность лазерного диода снизилась, а при этом снижается надежность считывания информации и работоспособность всего привода. Мощность излучения лазера контролируется схемой управления питанием лазера. Если визуально не видно красного свечения луча лазера, то или неисправен сам лазерный диод, или не работает его схема управления. Если свечение лазера видно, то целесообразно увеличить ток лазерного диода, вращая по часовой стрелке движок переменного резистора, расположенного на лазерной головке. В других случаях контролируют с помощью осциллографа работу микросхемы управления лазерным диодом.

Характеристики лазерного диода с микронеоднородностями активного слоя Текст научной статьи по специальности «Физика»

Аннотация научной статьи по физике, автор научной работы — Задорин А. С., Марципака Е. Ю., Шибельгут А. А.

Разработана математическая модель определения характеристик многомодового полупроводникового лазера с шероховатой поверхностью активного слоя. Показано, что указанные шероховатости вызывают радиационные потери волноводных мод, а также приводят к формированию стохастических межмодовых связей внутри модового спектра. В частности, установлено, что данные эффекты оказывают на параметры лазера воздействие, аналогичное увеличению коэффициента Петермана. Определено количественное соотношение между уровнем спонтанной эмиссии и статистическими характеристиками шероховатостей оптического волновода.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по физике , автор научной работы — Задорин А. С., Марципака Е. Ю., Шибельгут А. А.

Моделирование многослойных инжекционных лазеров с внутренним вытеканием излучения
Метод ускорения расчёта самосогласованной задачи моделирования инжекционного лазера
Исследование когерентных свойств лазерного излучения методами голографии и спекл-интерферометрии

Мощные лазерные диоды с длиной волны излучения 808 нм. I. термические механизмы ограничения выходной мощности

Моделирование динамики полупроводникового фотонно-кристаллического лазера с широкой излучающей поверхностью

i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Characteristics of laser diode with microinhomogenieties of active layer

Mathematical model of determining characteristics of multimode semiconductor laser with rough surface of active layer has been developed. It is shown that the indicated roughness results in radiation loss of waveguide modes and cause the formation of stochastic intermode couplings within the mode spectrum. It is stated in particular that given effects influence the laser parameters similar to increase of Petermann’s coefficient. The quantitative ratio between spontaneous emission level and roughness statistic characteristics of optical waveguide is determined.

Текст научной работы на тему «Характеристики лазерного диода с микронеоднородностями активного слоя»

ХАРАКТЕРИСТИКИ ЛАЗЕРНОГО ДИОДА С МИКРОНЕОДНОРОДНОСТЯМИ АКТИВНОГО СЛОЯ

А.С. Задорин, Е.Ю. Марципака, А.А. Шибельгут

Томский государственный университет систем управления и радиоэлектроники E-mail: Anatoly.Zadorin@rzi.tusur.ru

Разработана математическая модель определения характеристик многомодового полупроводникового лазера с шероховатой поверхностью активного слоя. Показано, что указанные шероховатости вызывают радиационные потери волноводных мод, а также приводят к формированию стохастических межмодовых связей внутри модового спектра. В частности, установлено, что данные эффекты оказывают на параметры лазера воздействие, аналогичное увеличению коэффициента Петермана. Определено количественное соотношение между уровнем спонтанной эмиссии и статистическими характеристиками шероховатостей оптического волновода.

Активные оптоэлектронные волноводные структуры: полупроводниковые лазеры (ППЛ) и усилители, а также допированные ионами эрбия волоконные световоды широко применяют в оптических системах связи, системах хранения и записи информации, технике высокоточных измерений и других областях современной техники. Производительность данных систем определяется свойствами используемых в них волоконных и полупроводниковых лазеров, и, прежде всего, их шумовыми и модуляционными характеристиками. На указанные параметры заметное влияние могут оказывать технологические погрешности производства активных структур. Так, в gain quided FP-лазерах (Фабри-Перо лазеры с рефрактивным волноводом) резонатор формируется в виде отрезка одномодового оптического волновода (ОВ), представляющего собой тонкий активный слой двойной полупроводниковой гетероструктуры (рис. 1) [1-4].

Рис. 1. Волноводная структура ППЛ: L — длина резонатора, w — ширина полоски контакта

Динамика спектрального состава излучения такого ППЛ, представленного набором продольных волноводных мод (ВМ), зависит от типа ОВ. В литературе она описывается коэффициентом Петермана (Petemam-Faktor) Ksp [1]. При этом считается, что как RIN (relative intensity noise), так и спектр излучения ППЛ полностью определяются пропорциональным Ksp уровнем спонтанной эмиссии, вызывающей стохастические флуктуации амплитуды и фазы вынужденного излучения.

Однако, аналогичные флуктуации числа вынужденных фотонов Ssti в i-ой моде лазерного диода (ЛД) могут быть вызваны и другими механизма-

ми. Подобное воздействие на SstJ оказывает, например, стохастическая связь между ВМ, обусловленная их рассеянием на микронеоднородностях неидеальной поверхности ОВ. В зависимости от технологии изготовления эта поверхность всегда характеризуется в той или иной степени выраженным случайным полем локальных микроскопических отклонений (шероховатостей) от среднего уровня. Указанные шероховатости могут оказывать влияние на параметры лазера.

Прежде всего, шероховатости приводят к дополнительным радиационным потерям энергии ВМ в резонаторе и соответствующему увеличению порогового тока лазера. Физический механизм указанных потерь связан с преобразованием ВМ в непрерывный континуум излучательных мод (ИМ). При этом межмодовая связь поддерживается набором элементарных гармонических решеток, образующих трехмерный энергетический спектр шероховатостей пленки ОВ G(K). Соответствующий коэффициент радиационного затухания ar выражается через парциальные коэффициенты а(и,в) как [5]:

и, в — саггитальный и азимутальный углы, определяющие направление ИМ; угол и1 определяется числовой апертурой (numerical aperture NA) ОВ: NA=sin(u1);

J E*0( x)e-J&K (uß>x J Es 0 (y)eJAK ™y dydx

E0(x) — нормированный профиль ВМ; £(и,в) — коэффициент связи ИМ и ВМ.

Другой механизм влияния шероховатостей активного слоя ЛД на его характеристики связан с формированием стохастических межмодовых связей (SMC — stochastic mode coupling) внутри модово-го спектра лазера. В силу стохастической природы этих связей, число фотонов ASy, рассеянных в i-ую из у-ой моды всегда 5-коррелированно с собственным полем фотонов S данной моды. Таким образом, оказывается, что воздействие флуктуаций ASy

на Sj вполне аналогично воздействию на них фотонов спонтанной эмиссии.

Данный механизм межмодовой перекачки фотонов реализуется лишь при фазовом синхронизме взаимодействия, при котором волновые числа Д ВМ связаны с вектором решетки K из спектра шероховатостей G(K) соотношением:

Учитывая различие частот ВМ, обусловленное особенностями самовозбуждения лазера, из последнего соотношения можно заключить, что меж-модовая перекачка возможна лишь в режиме генерации нескольких поперечных мод, когда частотный интервал Д vs между ними кратен интервалу Д vl между аксиальными модами:

где m — целое число.

Последнее условие не может удовлетворяться в полупроводниковых DFB-лазерах, работающих в одномодовом режиме. В этих устройствах технологические шероховатости волновода приводят лишь к дополнительным потерям и повышению порогового тока. Однако эти условия могут выполняться в полосковых FP-лазерах, в которых возможна генерация на нескольких поперечных модах. Резонансное усиление взаимного рассеяния энергии мод в данных условиях приводит к дополнительным шумам излучения как отдельных ВМ, так и Mode Partition Noise, а также оказывает влияние на характер динамических искажений оптических сигналов. В литературе указанные эффекты остаются практически не исследованными.

Поэтому целью настоящего сообщения является представление соответствующей математической модели и результатов расчетного моделирования.

Для моделирования динамических характеристик ППЛ будем использовать модель так называемых скоростных уравнений [1-4].

Рассмотрим активный Ж-модовый волноводный слой полоскового ППЛ на основе двойной гетероструктуры с резонатором Фабри-Перо. Динамика модового спектра в данной структуре описывается системой дифференциальных уравнений для модовой плотности фотонов Si i-ой моды и концентрации носителей заряда n:

где — коэффициент вынужденной рекомбинации, определяющий скорость создания фотонов /-ой моды за счет вынужденного излучения; Д. — -коэффициент спонтанной рекомбинации, определяющий скорость создания спонтанных фотонов в

/-ой моде; трк/ — время жизни фотонов; Кш — полный коэффициент увеличения спонтанного излучения; I — ток инжекции; е — элементарный заряд; V- активный объем ППЛ; тп — время жизни носителей заряда.

Прирост числа фотонов сС81 в /-ой моде за время Л определяется усилением уже имеющихся, вкладом спонтанного излучения, а убыль — потерями в резонаторе за счет материального поглощения и вывода излучения за пределы ЛД. Последние процессы формально учитываются введением времени жизни фотона в резонаторе тА/:

где н1Г — групповой показатель преломления; а„4 -коэффициент затухания в резонаторной моде; Я1, Д2 — коэффициенты отражения торцов резонатора.

В системе (1) параметр определяется соотношением:

где g¡ — функция усиления для /-ой моды; V,; -групповая скорость фотонов /-ой моды; Г; — коэффициент локализации /-ой моды.

Скорость генерации спонтанного излучения выражается формулой:

где пр — коэффициент спонтанного излучения.

Функция усиления g в общем случае включает в себя зависимость как от 5, так и от п и задается следующим образом:

, (nS)=dn(n — nth) I1 — vIS

где — так называемое дифференциальное уси-

ление; пй — пороговое значение концентрации инжектированных носителей; е — коэффициент сжатия усиления.

Система уравнений (1) в рамках данной модели полностью описывает динамические характеристики ЛД с идеальной поверхностью активного слоя.

Вырождение лазерных мод и межмодовая связь

Рассмотрим далее влияние микронеоднородностей (рис. 1) активного слоя ППЛ на режим генерации излучения.

Активный слой ППЛ представляет собой участок планарного волновода (рис. 1). Влияние неоднородностей границы планарной волноводной структуры на её волноводные свойства достаточно подробно изучено в литературе [1-4, 6, 7]. Вследствие этих шероховатостей лазерные моды обмениваются энергией в процессе распространения по ОВ. При этом фотоны, рассеянные в /-ую моду оказываются 5-коррелированными по фазе и поляри-

зации с собственными фотонами. Подобный механизм межмодовой связи аналогичен влиянию спонтанного излучения на параметры ППЛ и может являться причиной дополнительных шумов и уширения спектральной линии, ухудшения его модуляционных характеристик.

Для использования подхода [1, 2] для построения модели ППЛ рассмотрим различия механизмов межмодовой связи в пассивном планарном волноводе и активном лазерном резонаторе. В пассивном волноводе все моды, как известно, имеют одну и ту же частоту. Это обстоятельство упрощает достижение межмодового синхронизма и является необходимым условием для формирования многократных межмодовых связей внутри модового спектра волновода.

В лазерном же резонаторе условие самовозбуждения обеспечивается лишь для определенного набора частот:

где п — показатель преломления заполняющего резонатор вещества; а„ а, а1 — линейные размеры резонатора; I, т, р — целые числа, характеризующие порядок резонаторной моды; с — скорость света.

Отсюда видно, что все типы колебаний лазерного резонатора имеют различные частоты. Следовательно, в данных условиях не следует ожидать эффективного взаимодействия поля рассеянных фотонов некоторой /-ой моды с полями других мод.

Однако из (6) следует, что при определенных значениях линейных размеров резонатора ППЛ и индексов I, т, р возможно так называемое вырождение мод, т. е. совпадение резонансных частот для поперечных мод разного порядка. Обычно, изменения линейных размеров порядка 3. 5 % при изготовлении ППЛ не контролируются [3, 4]. Следовательно, для некоторых экземпляров ППЛ можно ожидать резонансного проявления эффекта сильного взаимодействия лазерных мод и обусловленного этим эффектом увеличения уровня шумов.

Случай модового вырождения, при котором частотный интервал между соседними поперечными модами 8vT кратен интервалу между продольными модами SuL, показан на рис. 2.

Рассмотрим условия возбуждения поперечных мод высокого порядка. Вблизи порога излучения лазеров поперечные моды высшего порядка обычно подавлены. Однако, при достаточно больших значениях мощности основной моды, в ряде конструкций ППЛ условие возбуждения поперечных мод низкого порядка выполняется вследствие пространственного выжигания носителей заряда [1-4, 6, 7]. В соответствии с (6), эти моды генерируются на частотах выше, чем частота основной моды. Рассмотрим, например, лазер с зарощенной гетероструктурой, работающий на длине волны А=1,3 мкм с шириной полоски w=3 мкм. Предположим, что основная мода и мода первого порядка ограничиваются шириной полоскового электрода. Приближенные выражения для пространственной структуры световых полей в резонаторе имеют вид:

E0 = cos( K0 z ) sin(^z), E1 = sin(Kj x) sin(ez),

где Kj~n/w, K«2n/w, fi=Nn/L. Пренебрегая далее дисперсионной зависимостью показателя преломления п, из волнового уравнения находим связь между модовыми индексами:

(l 7 w2 ) + ( p 7 L2) = (Inflo)2. (7)

Учитывая малость члена (l 2/w2) ур. (7) фактически определяет значение модового индекса p. Так для лазера с параметрами п=3,5, А=1,3 мкм и L=250 мкм, находим:

Отсюда следует, что частотный интервал между продольными модами в рассматриваемом случае будет:

fL = o¡ 2nL = 0,171 ТГц. (9)

Для указанного значения p частотный интервал Д/T между поперечными модами определяется подстановкой в (7) значений модовых индексов основной и поперечной моды первого порядка 1=1 и 1=2 для w=3 мкм:

Рис. 2. Вырождение лазерных мод

Д/ « 3с2/8и2w2 f = 1,327 ТГц.

В соответствии с (7), эта величина превышает межмодовый интервал продольных мод. Отсюда следует, что в рассматриваемых условиях основная мода и поперечная мода первого порядка с одним и тем же продольным индексом будут отделены друг от друга приблизительно восемью продольными модами. Для данной частоты разность в индексах р основной и поперечной моды первого порядка может быть определена из (7) как:

Ар и 3Ь2/2м>2р = 7,7. (11)

Заметим, что при вариации Ар на 1/2, разность частот основной и поперечной моды изменяется ровно на половину продольного межмодового интервала. Этому сдвигу соответствует изменение длины резонатора Ь, либо его ширины V всего на 3 %. При изготовлении лазера столь малые изменения длины резонатора контролировать очень сложно. В данных условиях при случайной вариации температуры, тока инжекции и т. д. возможно формирование условий частотного вырождения и сильного модового взаимодействия лазерных мод.

Полагая, что данные условия выполнены, оценим уровень межмодовой связи. При этом для описания взаимодействия мод из области вырождения воспользуемся скоростными уравнениями (1) и результатами работ [5, 8].

Модифицированные скоростные уравнения

В расчет будем принимать взаимодействие продольных и поперечных мод из рассмотренной выше области вырождения.

Связь лазерных мод в «холодном» резонаторе, обусловленная рассеянием на шероховатостях волноводного слоя, описывается уравнениями связанных мощностей [8]:

-± = _2ар + Е фЩ)[р -р], (12)

где Р,, а; — мощность и коэффициент затухания /-ой лазерной моды; /(А^) — энергетический спектр шероховатостей; ^ — коэффициент связи между /ой и у-ой модами, определяемый выражением:

^ = | Ае (х) ■ Щ (х) ■ Е*( х)йх,

где Е(х) — амплитудный профиль /-ой моды, Ае(х) — флуктуация диэлектрической проницаемости.

Учитывая далее, что групповая скорость ¥е линейно связывает продольную координату г и время

I лазерной моды, и, представляя объемную плотность фотонов £ через мощность, выразим динамику £ через пространственную зависимость Р в (12):

i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

где к — постоянная Планка.

Преобразуем систему (1) с учетом вышеуказанных выражений к виду:

dn = _____________________________n _ V r

Полученная система нелинейных связанных дифференциальных уравнений в рамках созданной модели полностью описывает динамику модовой плотности и концентрации инжектированных носителей с учетом механизма межмодовой связи.

Уровень шумов ППЛ количественно характеризуется относительной мощностью шума (ШИ) [1, 2].

где Af — полоса пропускания; WP(m) — спектральная плотность мощности; а — круговая частота; (P) — среднее значение мощности.

Соотношение (14) выведено для некоторого обобщенного шумового процесса. При изучении конкретных механизмов возникновения шумов, например, спонтанного излучения, или шума модового распределения (Mode Partition Noise) необходимо учитывать специфику данных процессов.

Следуя [1, 2], оценку шумов ППЛ будем производить на основе введения в систему скоростных уравнений (13) внешних шумовых источников, называемых ланжевенскими источниками. Соответствующие им флуктуации модовой плотности фотонов и концентрации инжектированных носителей обозначим, как Fsi(t) и Fn(t) соответственно:

d- = S (Rt i _t_L i)+Rp, Ло, + F ,i (t)

Свойства случайных процессов, описываемых ланжевенскими источниками, хорошо изучены [1, 2]. Для проведения дальнейших расчетов будем считать, что силы F(t) удовлетворяют условиям стационарности и эргодичности, а их статистическое распределение подчиняется нормальному закону. Кроме того, их среднее значение будем считать нулевым, а корреляционные свойства будем описывать 5-функцией.

Флуктуации концентрации носителей, описываемые членом Fn(t), обусловлены дробовым и рекомбинационным шумами. Однако в [1] показано, что шумы ППЛ, в основном, определяются флуктуациями числа фотонов Fsi(t). На этом основании далее мы будем пренебрегать членом Fn(t).

Кроме этого, так же как и в системе (13), ур. (15) дополним членом, отвечающим за межмодовую связь лазерных мод с вырожденными частотами.

Для оценки RIN рассмотрим установившийся процесс генерации ЛД, при котором модовая плот-

ность фотонов 81 и плотность инжектированных носителей п складываются из стационарного значения и шумовой составляющей £ с нулевым средним:

(£) и (п) в (16), (17) являются стационарными решениями системы дифференциальных уравнений (15).

Подставим в (15) выражения (16) и (17) и переведем анализ в частотную область. Получим:

(jm _ 1he )Дп(a) = _V VR,, j^j(a)

Рис. 3. Динамика излучения лазерного диода

Сама передаточная функция для малосигнального воздействия легко находится из (18) и определяется выражением [1]:

Ktotnsp + gVe, iTph, , (S, ) !

Далее следуя работе [1], получим окончательные выражения для RIN основной моды и для шума модового распределения (Mode Partition Noise) соответственно:

где А^Дю) — Фурье-образы ланжевенских сил; т -характеристическое время жизни /-ой моды, т^Д+т-;; т’е — константа, определяемая соотношением:

где те — время жизни носителей заряда.

Среднее значение (А^Дю)) определяется преобразованием Фурье от автокорреляционной функции (18):

Значения А^;(ю) и А£(ю) связаны между собой передаточной функцией Д(ю) [1]:

где a ф adi — частоты релаксационных колебаний и демпфирования соответственно:

где — эффективное время жизни фотона.

Выражения (19), (20) являются формальной основой для моделирования шумовых характеристик лазерного диода и исследования влияния технологических шероховатостей волноводного слоя на уровень RIN.

На рис. 3 представлены результаты моделирования динамики генерации излучения InGaAs лазерного диода, полученные на основании системы уравнений (13). На рисунке также показано установившееся значение S(t) фундаментальной и первой поперечной моды. Пунктирные линии соответствуют динамической характеристике лазерного диода с шероховатой поверхностью активного слоя. Радиус корреляции и среднее значение величины шероховатостей равно 1 нм, значение Кр равно 2.

Предложенная модель полупроводникового лазера с резонатором Фабри-Перо позволяет учитывать влияние технологических шероховатостей его активного слоя на характеристики излучения: уровень относительной интенсивности шума, порогового тока, спектральных характеристик и т. д. Полученные данные показывают, что соответствующий механизм флуктуаций вынужденного излучения лазера аналогичен механизму влияния поля спонтанных фотонов на шумовые и спектральные свойства лазерного излучения. Указанная связь может быть формализована в виде соотношений между приращениями коэффициента Петермана и статистическими характеристиками шероховатостей поверхности.

Установлено, что в лазерном диоде с микронеоднородностями активного слоя волноводные моды обмениваются энергией за счет их рассеяния на шероховатостях и стохастических межмодовых связей. Доля энергии, задействованной в процессе обмена, составляет около 30 %.

Показано, что в спектре стационарного излучения лазера с идеальной поверхностью волноводного слоя полем паразитных мод можно пренебречь. Однако даже весьма малые шероховатости волно-

водного слоя (~1 нм) приводят к значительному (~30 %) росту мощности паразитного излучения и соответствующему снижению спектральных и шумовых параметров.

1. Petermann K. Laser Diode Modulation and Noise. — Dortdrecht/Boston/London: Kluwer Academic Publishers, 1988. — 315 p.

2. Розеншер Э., Винтер Б. Оптоэлектроника. — М.: Техносфера, 2004. — 592 с.

3. Полупроводниковые инжекционные лазеры. Динамика, модуляция, спектры: Пер. с англ. / Под ред. У. Тсанга. — М.: Радио и связь, 1990. — 320 с.

4. Камия Т, Оцу М., Ямамото Ё., Такума Х. Физика полупроводниковых лазеров. Пер. с яп. / Под ред. В.Л. Величанского. -М.: Мир, 1989. — 307 с.

5. Аппельт В.Э., Задорин А.С., Круглов Р.С. Трансформация поля в многомодовом оптическом волноводе со случайными нерегулярностями поверхности пленки // Оптика и спектроскопия.

— 2005. — Т. 99. — № 4. — С. 635-643.

6. Ермаков О.Н. Прикладная оптоэлектроника. — М.: Техносфера, 2004. — 416 с.

7. Тамир Т. Волноводная оптоэлектроника. — М.: Мир, 1991. -575 с.

8. Унгер Г.Г. Планарные и волоконные оптические волноводы: Пер. с англ. / Под ред. В.В. Шевченко. — М.: Мир, 1980. — 657 с.

УДК 004.032.26 (06)

МЕТОДИКА НЕЙРОСЕТЕВОГО МОДЕЛИРОВАНИЯ СЛОЖНЫХ СИСТЕМ

Н.В. Замятин, Д.В. Медянцев

Томский университет систем управления и радиоэлектроники E-mail: zam@fet.tusur.ru

Изложена методика нейросетевого моделирования сложных систем. Предложены эффективные алгоритмы решения задач отдельных этапов, в частности модифицированный алгоритм «box-counting», развитие нейронной сети встречного распространения. Изложение сопровождается результатами практического моделирования технологического процесса производства этилена на нефтехимическом предприятии.

Современные объекты автоматизации — сложные многопараметрические нестационарные системы, управление которыми требует разработки специфичных систем управления (СУ). Основа любой СУ — модель объекта управления.

Синтез модели сложной системы — многоэтапный процесс, включающий кроме собственно структурно-параметрической идентификации ряд других не менее важных этапов (сбор и предобработка данных, тестирование, анализ синтезированной модели и т. д.). От выбора конкретных методов, алгоритмов, применяемых на каждом этапе, целиком зависит результат моделирования, адекватность синтезированной модели реальному объекту/процессу. Спектр методов достаточно широк, от классического статистического анализа до аппарата искусственных нейронных сетей (ИНС). Области применения различных методов могут частично или полностью перекрываться, можно с достаточной уверенностью сказать, что нет этапа моделирования, для решения задач которого существует единственно верный и оптимальный метод. Выбор существенным образом зависит от конкретного объекта и целей моделирования.

Когда в качестве объекта моделирования выступает сложная система, и нет необходимости струк-

турного соответствия (моделируется поведение), предпочтительнее оказывается нейросетевой подход. Широкий спектр решаемых задач, в том числе эффективное моделирование сложных нелинейных отображений, возможность обучения и заложенная в самой архитектуре адаптивность, перспективная аппаратная реализация, определяют выбор аппарата нейронных сетей, как основного инструмента при синтезе моделей сложных систем [1-3].

i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Решение практически важных задач автоматизации реальных сложных технологических процессов (ТП) требует разработки соответствующей методики нейросетевого моделирования. Существует базовый укрупненный алгоритм, определяющий общую последовательность шагов моделирования, на основании которого исследователь, в зависимости от специфики объекта моделирования, собственных предпочтений и практического опыта формирует свой «ритуал» анализа данных, определяет конкретные методики и алгоритмы, применяемые на каждом этапе моделирования. В самом общем виде схему анализа можно представить следующим образом.

Представленная разработанная на основании общей схемы методика была успешно апробирована при моделировании ТП производства этилена

Основные сведения о лазерах: принцип работы и характеристики лазерного излучения

Лазеры – источники высококогерентного и интенсивного монохроматического излучения. Излучение генерируется за счет возбуждения активной среды (обычно газ или полупроводниковый элемент), заключенной в резонаторе. Лазерный резонатор представляет собой полое тело цилиндрической формы, изнутри покрытое отражающим слоем. Один из торцов резонатора закрыт частично отражающим зеркалом, противоположный – полностью отражающим. При накачке световые волны перемещаются внутри резонатора до тех пор, пока не станут достаточно интенсивными, чтобы пройти через частично прозрачное зеркало.

Лазерное излучение относится к вынужденному, также его называют стимулированным. Сфера применения лазеров широка и постоянно растет, на сегодняшний день лазерные источники применяются в медицине, машинном зрении, в лазерной сварке, маркировке изделий и т. д.

Основные параметры и характеристики лазерного излучения

Диаметр пучка. За диаметр пучка принимается диаметр сечения пучка лазерного излучения на выходном торце резонатора. Способов измерения диаметра пучка достаточно много, от способа зависят и единицы измерения. Если пучок принимается за Гауссов, диаметр будет измеряться по уровню интенсивности 1/e 2 : это расстояние между такими двумя точками одномерного распределения интенсивности излучения, значение интенсивности которых в 0.135 раз меньше пика интенсивности.

Отклонение пучка. Несмотря на то, что лазерные пучки принимаются за параллельные, некоторый угол расходимости все же присутствует. Эта характеристика показывает, на какую величину отклоняется пучок от оптической апертуры по ходу распространения и измеряется в угловых единицах (радианах). В лазерных диодах угол расходимости определяется сразу двумя значениями – так проявляется астигматизм. В этом случае направление угла расходимости нужно проверять и уточнять в зависимости от конкретной схемы. На рис. 1 показана общая конфигурация лазерного диода и проявление расходимости лазерного пучка по ходу удаления экрана от источника излучения.

Рисунок 1. Общая структура полупроводникового слоя диода: профиль пучков, излучаемых такими диодами, чаще всего эллиптический

Угол веерного пучка. Обычно за веерный угол принимается угол отклонения пучка в определенной плоскости от нормали направления распространения. На рис. 2 показан вид веерного пучка лазерного диода и приведен его расчет.

Рисунок 2. Веерный угол пучка излучения лазерного диода

Выходная мощность. Выходная мощность определяется как максимальная зарегистрированная мощность, которую имеет лазерный пучок сразу после выхода из резонатора, до прохождения через какую-либо направляющую или фильтрующую оптику. Погрешность составляет порядка 10%, поэтому в паспорте приборов указываются доверительные интервалы. Профиль распределения интенсивности выходного излучения в основном характеризуется функцией Гаусса, максимум которой приходится на центр кривой, совпадающей с максимумом выходной мощности.

Класс. Диапазон мощностей лазерных источников невероятно широк. По этой причине была разработана классификация источников по силе воздействия на человека. В таблице приведена классификация лазерных источников, предложенная Центром по контролю приборов и радиационной безопасности (CDRH).

Класс

Описание

Не представляют опасности для человека.

ВОПРОС Как определить оптическую мощность китайских лазеров

Здравствуйте.
Нужен лазерный блок для 3018, в основном для резки фанеры 3мм.
Путем изучения интернетов и этого форума понял что с нормальным обдувом подойдет лазерный модуль с лазером на 5.5вт оптической мощности.
Теперь вопрос. Каждый продавец на али пишет что хочет в описании, как понять реальную опт. мощность лазерного блока.
Например:

1. ССЫЛКА >> Цвет 5.5w
2. ССЫЛКА >> тот же продавец
3. ССЫЛКА >> снова тот же продавец
и отдельно похожий визуально лазер но у нас
4. ССЫЛКА >>

Насколько я понял, CronosMaker производит 3018 в том числе и нормально производит. Полагаю и лазерные блоки у них должны быть нормального качества.

Темы из этой же категории

  • Первые шаги в ЧПУ
  • Направляющие для портала и каретки
  • Выбор программы
  • Какой модуль лучше? Lasertree k20 или Lt-4lds v2, фирма та же.
  • Муки выбора! 2 или 1?
BiFoot

В видео рассказ о китайских лазерах. Вкратце основные вопросы освещены доходчиво. Есть русские субтитры.

Ded63RUS
МЕСТНЫЙ МАСТЕР

НАШ ЧЕЛОВЕК

Регистрация 23.08.2020 Сообщения 199 Реакции 513 Баллы 168 Возраст 59 Адрес Россия Город Самара Имя Валерий

22347

Где-то на просторах форума пользователь Андрей рассказал, как купил нормальный лазер мощностью 5,5 Вт по оптике.
Я заказал себе такой, однако приедет он в начале марта в лучшем случае.
Есть ссылка, но длиннющая до не могу!
Я приложу скрин — там в принципе все видно и можно отыскать.

Ну, а инфу от Андрея поищи сам, там все написано что и почему!

Vovaf
НЕ ТОЛЬКО ЧИТАЕТ

ПРОВЕРЕННЫЙ
Регистрация 28.02.2020 Сообщения 120 Реакции 114 Баллы 68 Возраст 69 Город Луганск Имя Владимир

Ссылку от алиэкспресс можно сокращать. После фразы «.html?» начиная с символа ? и все что правее можно удалять.

Андреевич
МЕСТНЫЙ

ПРОВЕРЕННЫЙ
Регистрация 09.02.2021 Сообщения 29 Реакции 18 Баллы 8 Город Украина Имя Андреевич

Лазер от Андрея я тоже смотрел, тут вроде все логично, 20Вт явно общая мощность.
А те что в первом посте стоят столько же, но если следовать логике, то первый лазер 5.5 — это общая мощность ИБО дальше идет 15Вт, и это явно не оптическая мощь.
Тогда возникает вопрос, почему такой известный производитель 3018 продает фуфло по цене мощного лазера.
В общем одни вопросы.

Андрей
ГЛАВНЫЙ ВАХТЕР ФОРУМА

НАШ ЧЕЛОВЕК

Регистрация 08.05.2018 Сообщения 9 481 Реакции 9 766 Баллы 350 Адрес Россия Веб-сайт www.cnc3018.ru Город Санкт-Петербург Станок CNC3018 Плата 3.2 Прошивка 1.1f

Здравствуйте.
Нужен лазерный блок для 3018, в основном для резки фанеры 3мм.
Путем изучения интернетов и этого форума понял что с нормальным обдувом подойдет лазерный модуль с лазером на 5.5вт оптической мощности.
Теперь вопрос. Каждый продавец на али пишет что хочет в описании, как понять реальную опт. мощность лазерного блока.
Например:

1. ССЫЛКА >> Цвет 5.5w
2. ССЫЛКА >> тот же продавец
3. ССЫЛКА >> снова тот же продавец
и отдельно похожий визуально лазер но у нас
4. ССЫЛКА >>

Насколько я понял, CronosMaker производит 3018 в том числе и нормально производит. Полагаю и лазерные блоки у них должны быть нормального качества.

как показывает лично мой опыт, то НИКАК не определить, если только кто-то уже купил и может поделиться, реальными наблюдениями на работу.
Как сказали уже раньше, то данный лазер лично у в моих руках не долго пробыл (я брал его для знакомого), но как он говорит, что до сих пор работает нормально.
Единственно, что он не очень часто прибегает к тому, чтобы именно резать (а значит работать на максимальных режимах)

В любом случае, покупая на АЛИ, Вы не проверите (будь у нас даже подручные средства узнать мощность лазера тех.средствами)
А потом предъявить продавцу тоже трудно, потому что он сперва будет упираться и говорить типа:
«Дорогой друг, я очень счастлив, что ты написал мне это письмо,
сегодня идет снег и очень хорошая погода,
и лазер что я посылал тебе, полностью соответствует описанию. » (пример автора)

Дальше он перестанет отвечать вовсе, потом подключится к спору администрация АЛИ и максимум что и чем смогут помочь — вернут часть денег или предложат вернуть с отправкой назад товара, где отправка будет стоять 70-90% стоимости самой железки

Поэтому, чтобы ответить на Ваш вопрос одним словом — ЛОТЕРЕЯ.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *