Почему нельзя размыкать вторичную обмотку трансформатора тока
Перейти к содержимому

Почему нельзя размыкать вторичную обмотку трансформатора тока

  • автор:

Обслуживание РЗиА и вторичных цепей — Трансформаторы тока и вторичные токовые цепи

ГЛАВА ВТОРАЯ
ВТОРИЧНЫЕ ЦЕПИ, ИСТОЧНИКИ ПИТАНИЯ И ИХ ОБСЛУЖИВАНИЕ
К вторичным цепям относятся как оперативные цепи (в том числе цепи управления), так и цепи тока и напряжения. Рассмотрим сначала измерительные трансформаторы, являющиеся источниками питания цепей тока и напряжения.
В установках высокого напряжения измерительные трансформаторы изолируют реле устройств РЗА и приборы от цепей высокого напряжения, что значительно облегчает конструирование и условия эксплуатации этих реле и приборов.
Измерительный трансформатор состоит из магнитопровода, набранного из тонких листов трансформаторной стали, и обмоток, охватывающих его часть. Обмотка, подключаемая к первичной цепи подстанции, называется первичной, а обмотка, к которой подключаются измерительные приборы, реле и другая аппаратура, называется вторичной обмоткой измерительного трансформатора.
Согласно правилам техники безопасности вторичные обмотки измерительного трансформатора должны иметь постоянное заземление в одной точке схемы для предохранения персонала и оборудования вторичных цепей от высокого напряжения в случае повреждения изоляции между обмотками. Измерительные трансформаторы делятся на трансформаторы тока (ТТ) и трансформаторы напряжения (ТН).
Трансформаторы тока и вторичные токовые цепи. Первичная обмотка ТТ включается последовательно в цепь присоединения, например линии, трансформатора. В цепь вторичной обмотки ТТ последовательно включают обмотки реле и приборов. Коэффициентом трансформации ТТ называют отношение номинального тока I1 первичной обмотки к номинальному току I2 вторичной обмотки, что приблизительно равно отношению числа витков w2 вторичной обмотки к числу витков W1 первичной обмотки:

Магнитные потоки, создаваемые токами первичной и вторичной обмоток в магнитопроводе, направлены навстречу друг другу. Результирующий магнитный поток определяется разностью этих магнитных потоков; в нормальных условиях работы он невелик. При конструировании ТТ сечение магнитопровода рассчитывают, исходя из нормального
значения результирующего магнитного потока. Вторичная обмотка трансформатора тока должна быть замкнута всегда на цепь с относительно малым сопротивлением. При обрыве цепи вторичной обмотки, когда через первичную обмотку проходит ток, магнитный поток в магнитопроводе значительно возрастает, так как исчезает магнитный поток, создаваемый вторичной обмоткой. В разомкнутой вторичной обмотке будет наводиться э. д. е., значение которой может достигать десятков тысяч вольт и быть смертельно опасным. Магнитопровод ТТ при этом будет перегреваться из-за возросшего магнитного потока, что может привести к повреждению изоляции обмоток и железа ТТ. С учетом этого обстоятельства во вторичных цепях ТТ устанавливают испытательные зажимы и испытательные блоки, позволяющие при проведении испытаний или проверок устройств РЗА и приборов подключать, например, измерительные приборы без разрыва вторичной цепи.
На рис. 1,а схематично показан испытательный зажим в нормальном режиме работы вторичной цепи, когда съемная перемычка 1 соединяет две части испытательного зажима. Измерительный прибор подключают к измерительным винтам 2 зажима параллельно съемной перемычке, не разрывая замкнутую цепь, а затем ослабляют винты 3 и отодвигают или снимают перемычку, вследствие чего измерительный прибор оказывается последовательно включенным в замкнутую вторичную цепь (рис. 1,6). С помощью испытательных зажимов можно также замкнуть накоротко вторичные обмотки ТТ без предварительного разрыва цепей с аппаратурой и приборами, для чего надлежит установить перемычку между измерительными винтами испытательных зажимов, установленных в фазных и нулевом проводах ТТ (см. штриховую линию на рис. 3).

Рис. I. Испытательный зажим во вторичной цепи ТТ: а — нормальный режим; б —включение амперметра
Испытательные блоки — это специальные четырех- или шестицепные (на четыре или на шесть цепей) разъемные контактные устройства, при помощи которых присоединение устройств РЗА или измерительных приборов
к вторичным цепям ТТ, а в некоторых случаях — и к вторичным цепям ТН, к источникам и цепям оперативного тока. Эти устройства обеспечивают возможность быстрого и надежного размыкания или замыкания цепей, а также производства проверок и регулировок реле и других устройств с безразрывным подключением приборов во вторичные цепи ТТ. Обеспечивается также возможность временных изменений в схемах защиты, необходимых при наладке и проверке, без производства переключений на зажимах панели. На рис. 2 показан испытательный блок на шесть цепей. Испытательный блок состоит из основания (корпуса) 1, в углублении которого установлены два ряда пружинящих контактов (пластин) 3, и съемной рабочей крышки 2 с контактными планками 4, соединяющими попарно пружинящие контакты в каждой цепи при вставленной в корпус рабочей крышке (рис. 2,в). К одному ряду верхних внешних зажимов 6 блока подключают провода, идущие к реле или приборам, а к другому ряду нижних внешних зажимов 7 подключают вторичные цепи от ТТ или от ТН или питающие цепи оперативного тока. При снятии рабочей крышки испытательного блока, верхние и нижние пружинящие контакты каждой цепи изолируются друг от друга, а соседние пружинящие контакты нижнего ряда, к которому подведены вторичные цепи от ТТ, закорачиваются без разрыва цепей на расположенные в глубине корпуса блока закорачивающие пластины 5 (рис. 2,а). На время проверок защиты персоналом службы РЗАИ рабочая крышка заменяется испытательной крышкой, электрически соединяющей испытательную схему или измерительные приборы с цепями устройств РЗА. В отличие от рабочей испытательная крышка 8 (рис. 2,г) вместо контактных планок имеет контактные пластины 9, электрически соединенные с измерительными зажимами 10 на внешней стороне крышки. При включении испытательной крышки с заранее подсоединенным к ней амперметром последний включается в цепь, проходящую через блок, без разрыва этой цепи.
В каждой крышке блока есть замок (на рис. 2 не показан), защелкивающийся при установке крышки на полную глубину и фиксирующий ее положение. Если по условиям эксплуатации испытательный блок должен длительное время находиться без рабочей крышки, то вместо нее в блок должна быть вставлена холостая крышка для предовращения попадания пыли и мусора внутрь блока. Холостая крышка не имеет внутреннего выступа, контактных планок или пластин и поэтому при своем включении сохраняет неизменным положение пружинящих контактов блока. Холостая крышка должна отличаться от рабочей крышки цветом. При установке испытательных блоков в шкафах открытого распределительного устройства шкафы должны оборудоваться подогревом.
Вторичные обмотки ТТ и обмотки реле (приборов) соединяют между собой по различным типовым схемам.

Рис. 2. Устройство испытательного блока: а — корпус испытательного блока без крышки (со снятой левой боковиной); б — рабочая крышка испытательного блока; в — испытательный блок с вставленной рабочей крышкой (в разрезе); г — схема испытательного блока с испытательной крышкой, включенной для измерения тока в цепи

Нa рис. 3 в качестве примера приведена схема соединения вторичных обмоток ТТ и обмоток реле в полную звезду (имеются также схемы соединения в неполную звезду, в треугольник и др.) [2]. В этой схеме три одноименных конца вторичных обмоток (обозначены и1 или и2) соединены между собой и образуют нулевую точку «звезды», от остальных трех концов обмоток отходят фазные провода. Обмотки трех реле подключены с одной стороны к фазным проводам, другие концы обмоток реле соединены между собой и также образуют нулевую точку. Нулевые точки ТТ и реле соединены между собой проводом, который называют нулевым. В нормальном режиме нагрузки и при трехфазных к. з. по фазным проводам проходят равные по значению токи, соответствующие токам в первичной цепи, по нулевому проводу при этом проходит ток во много раз меньшего значения — так называемый ток небаланса. Ток небаланса возникает из-за отклонений значения и фазы вторичных токов ТТ; эти отклонения бывают различны в каждой фазе. Ток небаланса равен геометрической сумме вторичных токов трех фаз.

Рис. 3. Схема соединения вторичных обмоток ТТ и обмоток реле (приборов) в полную звезду (ИЗ — испытательные зажимы)
При однофазном замыкании на землю по фазному проводу поврежденной фазы и нулевому проводу проходит ток, соответствующий току замыкания на землю. Приведенная на рис. 3 схема является также фильтром токов нулевой последовательности; в выходную цепь этого фильтра (в нулевой провод) включают реле, которые должны действовать при замыканиях на землю. На кабельных линиях напряжением 35 кВ и ниже иногда устанавливают специальные ТТ нулевой последовательности (ТНП). Стальной магнитопровод ТНП кольцеобразной или прямоугольной формы охватывает трехфазный кабель или несколько трехфазных кабелей. К вторичной обмотке ТНП подключают реле. При прохождении по защищаемому кабелю токов нагрузки, токов трехфазных или двухфазных к. з. геометрическая сумма магнитных потоков в магнитопроводе ТНП теоретически равна нулю. При этом ток во вторичной обмотке „ТИП теоретически должен быть равен нулю. Однако вследствие некоторой несимметрии расположения жил кабеля или самих кабелей по отношению к вторичной обмотке ТНП в последней возникает небольшая э. д. с. и через обмотку реле проходит ток небаланса, который отстраивают от тока срабатывания реле. При прохождении по фазе кабеля тока однофазного замыкания на землю во вторичной обмотке ТНП индуцируется э. д. е., под действием которой появляется ток, достаточный для срабатывания реле.
Постоянное заземление вторичной обмотки ТТ в одной точке выполняют обычно на самом ТТ или на ближайшем к нему ряду зажимов. В сложных схемах релейной защиты, когда соединяют между собой вторичные обмотки нескольких групп ТТ, размещенных в разных местах подстанции, постоянное заземление вторичных цепей этих ТТ также должно выполняться в одной точке. Обычно это заземление устанавливают в месте сборки цепей групп ТТ (в распределительном устройстве или на панели релейной защиты).
Особенности производства операций в токовых цепях. Эксплуатационные работы (проверки и испытания), связанные с ТТ, могут ограничиваться только вторичными цепями ТТ (измерение сопротивления изоляции, проверка цепей релейной защиты под нагрузкой и т. д.), а могут охватить и первичную цепь ТТ. Оперативный персонал должен четко представлять себе объем и место предстоящих работ и выполнять все подготовительные работы в полном соответствии с правилами техники безопасности [5].
Проведение операций с испытательными блоками во вторичных цепях ТТ разрешается оперативному персоналу лишь в некоторых случаях (см. ниже). При этом оперативный персонал проходит специальное обучение, во время которого должны быть рассмотрены варианты всех операций, их содержание и последовательность. Оперативный персонал, допущенный к операциям с испытательными блоками, должен быть также проинструктирован персоналом службы РЗАИ на рабочем месте.
Основные правила выполнения операций с испытательными блоками заключаются в следующем. При снятии рабочей крышки испытательного блока необходимо нажать пальцами на обе защелки, чтобы открыть замки с двух сторон крышки, а затем резко без перекосов выдернуть крышку в направлении, перпендикулярном панели. Вставлять рабочую крышку нужно до защелкивания замка.
При наличии двух выключателей на присоединение операции в токовых цепях одного из двух комплектов ТТ
с помощью испытательных блоков надлежит проводить с временным отключением устройств релейной защиты, которые по принципу действия и чувствительности могут срабатывать ложно из-за кратковременного возникновения несимметрии токов при рабочем режиме (например, дифференциально-фазные высокочастотные защиты, чувствительные токовые защиты нулевой последовательности соответствующих ступеней, защиты параллельных линий и т. п.) [6]. Если указанные выше операции поручается выполнить оперативному персоналу, службой РЗАИ должны быть даны письменные указания с перечнем всех защит, которые должны быть при этом временно (и на какое время) отключены.

Рис. 4. Схема трехфазного пятистержневого трансформатора напряжения

После окончания работы во вторичных цепях ТТ оперативный персонал должен проверить, введены ли в действие на отключение все защитные устройства, которые выводились из действия.

почему нельзя размыкать вторичную обмотку трансформатора тока

В измерительных схемах для измерения силы тока, применяются так называемые измерительные трансформаторы тока, которые предназначены для преобразования значения тока, удобного для измерения. Первичная обмотка трансформатора последовательно подключается к истонику тока, а во вторичной обмотке протекает ток пропорциональный току первичной и намного меньшей величины, что удобно для измерения. Вотричная обмотка обязательно постоянно нагружается . Если во вторичной обмотке нет нагрузки то в ней возникает высокое напряжение отчего во первых появляется угроза прямого пробоя изоляции, что опасно персоналу, во вторых в сердечнике трансформатора увеличиваются потери, сердечник греепся, что также со временем приводит к пробою изоляции.

Остальные ответы
Можно! Только не писай рядом с розеткой.
это кто решил?
В катушке зажигания, когда свеча искру даёт, это считается размыканием или нет.

Почему нельзя? Кто сказал?
В мощных трансах только не надо это делать надолго. На «холостом ходу» он начинает греться, если я не ошибаюсь.

Если тр-р стоит в цепи, где потребление тока большое, то на вторичной обмотке может возникнуть значительное напряжение, на которое изоляция тр-ра не рассчитана. Может возникнуть пробой межвитковой изоляции,

Ну во-первых, трансформатор тока работает в режиме КЗ и размыкать его вторичные цепи не следует. При нормальной работе по первичной обмотке протекает ток, возникает магнитная поток ( допустим Y1) первичной обмотки, по магнитопроводу магнитный поток будет индуцировать ЭДС во вторичной обмотке, где также появится вторичный ток, но уже другого значения. Как и в первичной, так и во вторичной будет магнитный поток ( допустим Y2) Они как раз имеют встречное направление, т. е компенсируют друг друга, и образуют малый основной магнитный поток. Так при размыкании, магнитного потока вторичной цепи не будет, основной магнитный поток возрастет в разы, что приведет к перегреву и дальнейшему выходу из строя оборудования.
Вторая причина следующая: Везде применим закон сохранения энергии, а именно мощность передаваемая из первичной во вторичную, если не брать в расчет на потери, должна быть равна. P1=Р2. Мощность у нас это произведение тока и напряжения тогда: I1*U1=I2*U2 отсюда, усли обрыв вторичной цепи, составляющая I2 пропадает. Левая часть а именно: I1*U1 = const, так как первичная обмотка имеет один виток который подключен к источнику тока. И как раз таки по закону сохранения энергии составляющая U2, возрастать до хороших величин, которых вполне достаточно, чтобы нанести вред и персоналу и оборудованию.

Опасность размыкания вторичной обмотки ТТ

В данной статье речь пойдет об опасности размыкания вторичной обмотки трансформаторов тока (ТТ).

Трансформаторы тока предназначены для преобразования первичного тока до наиболее удобных для измерительных приборов и реле значений и отделения цепей измерения и защиты от первичных цепей высокого напряжения.

Трансформатор тока работает при постоянной нагрузке во вторичной цепи и переменной величине тока в первичной обмотке, т.е. при переменном магнитном потоке. Нормальный режим его работы близок к условиям короткого замыкания, так как его вторичная обмотка замкнута на последовательно соединенные обмотки приборов, реле и других аппаратов с незначительным сопротивлением.

Коэффициент трансформации трансформаторов тока

Номинальные вторичные токи равны 5 А и 1 А.

На векторной диаграмме (рис. 9.35 б) показана результирующая магнитнодвижущая сила (МДС) F0. В нормально режиме работы она сравнительно невелика, что обусловливает малые значения магнитного потока (Ф) и электродвижущей силы Е2 (ЭДС), наводимой во вторичной обмотке.

Рис. 9.35 - Трансформатор тока

При разомкнутой вторичной обмотке ток в ней равен нулю, т.е. I2 = 0, и МДС вторичной обмотки также равна нулю, т.е. F2=I2w2=0. Так как ток в первичной обмотке I1 и ее МДС F1 практически не изменяются, то результирующая МДС F0 увеличивается во много раз и становится равной F1.

Соответственно увеличивается магнитный поток Ф, величина которого ограничивается лишь насыщением сердечника и индукцией в стали сердечника, при этом за счет повышенных потерь в стали сердечника происходит сильный нагрев магнитопровода, вплоть до пожара.

В результате магнитный поток Ф наведет во вторичной обмотке значительную ЭДС, а напряжение на разомкнутых концах этой обмотки может возрасти с нескольких десятков до тысяч вольт, что, опасно для:

  • обслуживающего персонала;
  • изоляции вторичной обмотки;
  • приборов, реле и терминалов защит.

Поэтому при эксплуатации запрещается разрывать вторичную цепь работающего трансформатора тока согласно ПУЭ 7-издание пункт 3.4.16, тем более что это может совпасть с режимом к.з. в первичной обмотке.

ПУЭ пункт 3.4.16

Перед отключением прибора от трансформатора тока необходимо предварительно замкнуть накоротко его вторичную обмотку используя испытательные блоки или зашунтировать обмотку реле, прибора и только после этого отъединить прибор.

Следует запомнить, что:

Нормальным режимом работы ТТ является режим К3 , а режим с разомкнутой вторичной обмоткой (режим холостого хода) — аварийным режимом . Поэтому если ТТ включен и к его вторичной обмотке не подключена нагрузка, то эту обмотку следует обязательно закоротить.

1. Электроснабжение сельского хозяйства. И.А. Будзко, 2000 г.

Всего наилучшего! До новых встреч на сайте Raschet.info.
Поделиться в социальных сетях

Благодарность: Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» и «PayPal» . Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований. Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Ещё записи из рубрики «Статьи по РЗА»

Способы сохранения устойчивой работы газотурбинных и газопоршневых установок

27.10.2016 · 0 ·

Способы сохранения устойчивой работы газотурбинных и газопоршневых установок При параллельной работе с энергосистемой газотурбинных и газопоршневых установок одним из основных.

Основные принципы релейной защиты

15.05.2020 · 0 ·

Основные принципы релейной защиты В данной статье речь пойдет об основных принципах релейной защиты. Устройство релейной защиты в общем.

Использование трансформатора заземления нейтрали

19.08.2016 · 0 ·

Использование трансформатора заземления нейтрали Для повышения чувствительности защиты от однофазных замыканий на землю используют трансформатор.

Cелективность автоматических выключателей

02.05.2020 · 0 ·

Cелективность автоматических выключателей Выбор системы защиты электроустановки является важным аспектом как для обеспечения экономичной и.

Защита контактов реле от бросков напряжения и токов в цепях переменного и постоянного тока

14.09.2017 · 0 ·

Защита контактов реле от бросков напряжения и токов в цепях переменного и постоянного тока В этой статье речь пойдет о защите контактов реле и входных цепей устройств чувствительных к воздействию.

А если на одном магнитопроводе несколько вторичных обмоток? Достаточно ли держать замкнутой только одну из них?

Нет не достаточно, так как при разомкнутой одной из вторичной обмотке на разомкнутых концах этой обмотки наводится значительная ЭДС и может достигать нескольких тысяч вольт, что опасно для персонала, приборов и самого ТТ (В статье об этом сказано). Если у Вас одна из вторичных обмоток не используется — она должна быть обязательно закорочена, согласно ПУЭ 7-издание пункт 3.4.16.

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.

Эксплуатация измерительных трансформаторов тока Janitza

Выход трансформатора тока является источником тока. При растущей нагрузке выходное напряжение увеличивается (в соответствии с отношением U = R x I) до тех пор, пока не происходит насыщение. После насыщения пиковое напряжение возрастает с увеличением гармонического искажения и достигает максимального значения при бесконечно большой нагрузке, т.е. открытых клеммах вторичной обмотки. Таким образом, в открытых трансформаторах могут возникать высокие пики напряжения, представляющие угрозу для человека, они также могут привести к повреждению трансформатора и измерительного прибора при повторном подключении.

Поэтому необходимо избегать режима без измерения и выполнять короткое замыкание трансформаторов без нагрузки.

Клеммные колодки трансформатора тока с устройством для короткого замыкания

Для короткого замыкания трансформаторов тока и для проведения повторных сравнительных измерений рекомендуется использовать специальные клеммные колодки для DIN-рейки. Они состоят из поперечного соединительного зажима с измерительным прибором и контрольным устройством, изолированных перемычек для заземления и короткого замыкания клеммы трансформатора.

Клеммная колодка для трансформаторов

Перегрузка

Перегрузка первичного тока:

Слишком сильный первичный ток —> Насыщение материала сердечника —> Ощутимое снижение точности.

Перегрузка номинальной мощности:

К трансформатору с определенной номинальной мощностью подключено слишком много измерительных приборов, или используются слишком длинные линии —> Насыщение материала сердечника —> Ощутимое снижение точности.

При коротком замыкании сигнал не поступает. Измерительный прибор не может выполнять измерения. Трансформаторы тока можно (или нужно) закоротить, если отсутствует сопротивление / нагрузка (измерительный прибор).

Эксплуатация трансформатора тока при наличии высших гармоник

Все наши трансформаторы измеряют высшие гармоники с частотой до 2,5 кГц (50-ые гармоники),некоторые типы могут работать с частотой до 3 кГц и даже более. При большой частоте происходят потери, связанные с вихревыми токами, которые также приводят к нагреванию. При слишком большой доле высших гармоник необходимо использовать трансформаторы тока из более тонкой стали.

Тем не менее, нельзя сформулировать общее правило относительно предельного значения доли высших гармоник, поскольку нагревание зависит от размера сердечника, поверхности трансформатора (охлаждения), температуры окружающего воздуха, коэффициента трансформации и т. п.

Потребность комбинированных измерительных приборов, счетчиков электроэнергии и измерительных приборов в собственной мощности

Потребляемая мощность UMG 96RM-E на каждый токовый вход

Особый случай: большой трансформатор – слабый ток

Совет:

Выберите трансформатор тока, подходящий для измерения номинального тока 50 А. Для снижения в два раза эталонного тока трансформатора тока достаточно провести этот ток через трансформатор дважды.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *