Что такое гамма излучение поток положительных ионов
Гамма-излучение (γ-излучение) – электромагнитное излучение, принадлежащее наиболее высокочастотной (коротковолновой) части спектра электромагнитных волн. Приведем классификацию электромагнитных волн:
Название | Длина волны, м | Частота, Гц |
---|---|---|
радиоволны | 3·10 5 — 3 | 10 3 — 10 8 |
микроволны | 3 — 3·10 -3 | 10 8 — 10 11 |
инфракрасное излучение | 3·10 -3 — 8·10 -7 | 10 11 — 4 . 10 14 |
видимый свет | 8·10 -7 — 4·10 -7 | 4·10 14 — 8·10 14 |
ультрафиолетовое излучение | 4·10 -7 — 3·10 -9 | 8·10 14 — 10 17 |
рентгеновское излучение | 3·10 -9 — 10 -10 | 10 17 — 3·10 18 |
гамма-излучение | < 10 -10 | > 3·10 18 |
На шкале электромагнитных волн гамма-излучение соседствует с рентгеновскими лучами, но имеет более короткую длину волны. Первоначально термин “гамма-излучение” относился к тому типу излучения радиоактивных ядер, который не отклонялся при прохождении через магнитное поле, в отличие от α- и β-излучений.
Условно верхней границей длин волн гамма-излучения, отделяющей его от рентгеновского излучения, можно считать величину 10 -10 м. При столь малых длинах волн первостепенное значение имеют корпускулярные свойства излучения. Гамма-излучение представляет собой поток частиц — гамма-квантов или фотонов, с энергиями Е = hν (h – постоянная Планка, равная 4.14·10 -15 эВ . сек, ν – частота электромагнитных колебаний). Фотоны с энергиями Е > 10 кэВ относят к гамма-квантам. Между длиной волны λ гамма-излучения и его частотой ν существует то же соотношение, что и для других типов электромагнитных волн:
ν·λ = с (с – скорость света).
Частота гамма-излучения (> 3·10 18 Гц) отвечает скоростям электромагнитных процессов, протекающих внутри атомных ядер и с участием элементарных частиц. Поэтому источниками гамма-излучения могут быть атомные ядра и частицы, а также ядерные реакции и реакции между частицами, в частности аннигиляция пар частица-античастица. И наоборот, гамма-излучение может поглощаться атомными ядрами и способно вызывать превращения частиц. Изучение спектров ядерного гамма-излучения и гамма-излучения, возникающего в процессах взаимодействия частиц, дает важную информацию о структуре этих микрообъектов.
Гамма-излучение может также возникать при торможении быстрых заряженных частиц в среде (тормозное гамма-излучение) или при их движении в сильных магнитных полях (синхротронное излучение).
Источниками гамма-излучения являются также процессы в космическом пространстве. Космические гамма-лучи приходят от пульсаров, радиогалактик, квазаров, сверхновых звёзд.
Гамма-излучение ядер испускается при переходах ядра из состояния с большей энергией в состояние с меньшей энергией, и энергия испускаемого гамма-кванта с точностью до незначительной энергии отдачи ядра равна разности энергий этих состояний (уровней) ядра. Энергия ядерного гамма-излучения обычно лежит в интервале от нескольких кэВ до нескольких МэВ и спектр этого излучения линейчатый, т. е. состоит из ряда дискретных линий. Изучение спектров ядерного гамма-излучения позволяет определить энергии состояний (уровней) ядра.
При распадах частиц и реакциях с их участием обычно испускаются гамма-кванты с бoльшими энергиями — десятки-сотни МэВ.
Гамма-излучение, образующееся при прохождении быстрых заряженных частиц через вещество, вызывается их торможением в кулоновском поле ядер вещества. Тормозное гамма-излучение имеет сплошной, спадающий с ростом энергии спектр, верхняя граница которого совпадает с кинетической энергией заряженной частицы. На ускорителях заряженных частиц получают тормозное гамма-излучение с энергиями до нескольких десятков ГэВ и более.
Гамма-излучение можно получить при соударении электронов большой энергии от ускорителей с интенсивными пучками видимого света, создаваемых лазерами. При этом электрон передает свою энергию световому фотону, который превращается в гамма-квант. Аналогичное явление может иметь место и в космическом пространстве в результате соударений фотонов с большой длиной волны с быстрыми электронами, ускоренными электромагнитными полями космических объектов.
Гамма-излучение обладает большой проникающей способностью, т. е. может проходить сквозь большие толщи вещества. Интенсивность узкого пучка моноэнергетических гамма-квантов падает экспоненциально с ростом проходимого им в веществе расстояния. Основные процессы взаимодействия гамма-излучения с веществом — фотоэлектрическое поглощение (фотоэффект), комптоновское рассеяние (комптон-эффект) и образование пар электрон-позитрон. При фотоэффекте гамма-квант выбивает из атома один из его электронов, а сам исчезает. При комптон-эффекте гамма-квант рассеивается на одном из слабо связанных с атомом или свободных электронов вещества. Если энергия гамма-кванта превышает 1.02 МэВ, то возможно его превращение в электрическом поле ядер в пару электрон-позитрон (процесс обратный аннигиляции).
Рис. Зависимость полного коэффициента поглощения гамма-излучения в свинце и алюминии от энергии (сплошные линии). Поглощение за счёт фотоэффекта в алюминии пренебрежимо мало при рассматриваемых энергиях. Пунктирные линии − отдельные вклады, вносимые в полный коэффициент поглощения фотоэффектом, комптоновским рассеянием, рождением пар для свинца.
Гамма-излучение используется в технике (напр., дефектоскопия), радиационной химии (для инициирования химических превращений, напр., при полимеризации), сельском хозяйстве и пищевой промышленности (мутации для генерации хозяйственно-полезных форм, стерилизация продуктов), в медицине (стерилизация помещений, предметов, лучевая терапия) и др.
Гамма-излучение
Гамма-излучение представляет собой электромагнитное излучение, которое принадлежит к высокочастотной части спектра волн. Гамма-излучение имеет более короткую длину волны и граничит на шкале электромагнитных волн с рентгеновскими лучами. Впервые было открыто физиком П.Вилларом в далеком 1900 году в ходе излучения радия. Гамма-излучение относится к ионизирующим излучениям, взаимодействие которых с веществом приводит к образованию ионов. Основными источниками гамма-излучения являются искусственные и естественные радиоактивные изотопы цезия, радия и прочих элементов.
Характерные свойства
Гамма-излучение –– поток фотонов, которые имеют высокую энергию. Гамма-излучение не отклоняется в магнитном поле и не имеет электрического заряда. Его частота отвечает скоростям электромагнитных процессов, которые протекают с участием элементарных частиц и внутри атомных ядер. Гамма-излучение обладает большей проникающей способностью, чем α- и β-излучение, то есть способно проходить через вещество без ослабления. При взаимодействии Гамма-излучения с веществом возникают следующие важные процессы — Комптон-эффект, фотоэлектрическое поглощение и образование пар «позитрон-электрон».
Влияние на организм человека
Действие гамма-излучения на человеческий организм аналогично действию других ионизирующих излучений, то есть вызывает лучевое поражение (в зависимости от дозы) вплоть до летального исхода. Разные клетки организма ведут себя по-разному в γ-лучах. Характер влияния гамма-излучения зависит от пространственных особенностей излучения и энергии γ-квантов. Однократное облучение незначительной дозой не наносит разрушительного воздействия на клетку организма. Поэтому гамма-излучение используется в радиационной химии, технике, сельском хозяйстве, медицине, пищевой промышленности и прочих областях.
- Договор технического обслуживания медицинской техники
- Безопасность в рентгенкабинете
- Общий дозиметрический контроль
Обратная связь
Нужна консультация?
Позвоните нам по номеру
+7 (495) 323–77–55 или оставьте свои контакты и мы вам перезвоним
Фотографии
Что такое излучение?
×
Хотите узнать больше о деятельности МАГАТЭ? Подпишитесь на нашу ежемесячную электронную рассылку, чтобы быть в курсе самых важных новостей, получать аудио- и видеоматериалы и многое другое.
Что есть что в ядерной сфере
Андреа Галиндо , Бюро общественной информации и коммуникации МАГАТЭ
Излучение — это энергия, которая перемещается из одного места в другое в таком виде, который можно описать как волны или частицы. Мы постоянно сталкиваемся с излучением в нашей повседневной жизни. В число знакомых всем источников излучения входят Солнце, микроволновые печи, которые стоят у нас на кухне, и радиоприемники, которые мы слушаем в автомобилях. В основном подобное излучение не причиняет какого-либо вреда нашему здоровью. Но некоторые виды излучения являются опасными. В целом, при более низких дозах излучение связано с меньшими рисками, однако с увеличением дозы они повышаются. Для защиты нашего организма и окружающей среды от вредного воздействия излучения следует принимать различные меры в зависимости от его вида, при этом сохраняя возможность извлекать пользу из его многочисленных применений.
Как можно использовать излучение? Некоторые примеры
- Здравоохранение. Благодаря излучению мы имеем возможность применять специальные медицинские процедуры, например, для лечения рака, и пользоваться методами диагностической визуализации.
- Энергетика. Излучение позволяет нам производить электричество, например, с помощью солнечной энергии и ядерной энергии.
- Окружающая среда и изменение климата. Излучение может быть использовано для очистки сточных вод или для создания новых сортов растений, устойчивых к изменению климата.
- Промышленность и наука. С помощью ядерных методов, основанных на излучении, ученые могут исследовать объекты наследия или создавать материалы с улучшенными характеристиками, например, для автомобильной промышленности.
Если излучение полезно, почему мы должны защищать себя от него?
Излучение имеет множество полезных применений, но при возникновении рисков, связанных с его использованием, следует принимать конкретные меры для защиты людей и окружающей среды. Этот же подход применяется и к любым другим видами деятельности. Разные виды излучения требуют разных мер защиты: его обладающий низкой энергией вид, называемый «неионизирующее излучение», может требовать меньшей защиты и соответствующих мер, чем обладающее более высокой энергией «ионизирующее излучение». В соответствии со своим мандатом МАГАТЭ устанавливает нормы для защиты людей и окружающей среды от ионизирующего излучения при его мирном использовании.
Виды излучения
Неионизирующее излучение
Примерами неионизирующего излучения являются видимый свет, радиоволны и микроволны (Инфографика: Адриана Варгас/МАГАТЭ)
Неионизирующее излучение — это излучение более низкой энергии, которое не обладает достаточной мощностью, чтобы отделить электроны от атомов или молекул, находящихся в веществе или в живых организмах. Однако его энергия может заставить эти молекулы вибрировать и таким образом выделять тепло. Например, именно так работают микроволновые печи.
Для большинства людей неионизирующее излучение не представляет риска для здоровья. Однако работникам, которые регулярно контактируют с некоторыми источниками неионизирующего излучения, могут потребоваться специальные меры для защиты, например, от выделяемого тепла.
В число других примеров неионизирующего излучения входят радиоволны и видимый свет. Видимый свет — это то неионизирующее излучение, которое может воспринимать человеческий глаз. Радиоволны — это вид неионизирующего излучения, которое наши глаза и другие органы чувств не воспринимают, а вот радиоприемники способны их улавливать.
Ионизирующее излучение
Примерами ионизирующего излучения являются гамма-излучение, используемое для некоторых видов лечения рака, рентгеновское излучение и излучение, испускаемое радиоактивными материалами, используемыми на атомных электростанциях (Инфографика: Адриана Варгас/МАГАТЭ)
Ионизирующее излучение — это вид излучения энергии такой мощности, что оно способно отделять электроны от атомов или молекул, тем самым вызывая изменения на атомном уровне при взаимодействии с веществом, включая живые организмы. Такие изменения обычно сопровождаются образованием ионов (электрически заряженных атомов или молекул) — отсюда и возник термин «ионизирующее» излучение.
В больших дозах ионизирующее излучение может повредить клетки или органы нашего тела или даже привести к смерти. В случае надлежащего использования и в правильных дозах, а также при соблюдении необходимых мер защиты, этот вид излучения имеет множество полезных применений, например, в производстве энергии, в промышленности, в научных исследованиях, в медицинской диагностике и лечении различных заболеваний, таких как рак. Хотя ответственность за регулирование в области использования источников излучения и радиационной защиты лежит на государствах, МАГАТЭ оказывает поддержку законодателям и регулирующим органам через всеобъемлющую систему международных норм безопасности, направленных на защиту работников и пациентов, а также населения и окружающей среды от потенциально вредного воздействия ионизирующего излучения.
Неионизирующее и ионизирующее излучение имеют разную длину волн, что напрямую связано с их энергией. (Инфографика: Адриана Варгас/МАГАТЭ).
Научное объяснение радиоактивного распада и возникающего при этом излучения
Ионизирующее излучение может исходить, например, от нестабильных (радиоактивных) атомов, когда они переходят в более стабильное состояние, высвобождая при этом энергию.
Большинство атомов на Земле стабильны, в основном благодаря уравновешенному и стабильному составу частиц (нейтронов и протонов) в их центре (ядре). Однако в некоторых видах нестабильных атомов число протонов и нейтронов в составе их ядра не позволяет им удерживать эти частицы вместе. Такие нестабильные атомы называются «радиоактивными атомами». При распаде радиоактивных атомов выделяется энергия в виде ионизирующего излучения (например, альфа-частицы, бета-частицы, гамма-лучи или нейтроны), которое при контролируемом и безопасном использовании может приносить различную пользу.
Процесс, в ходе которого радиоактивный атом становится более стабильным за счет высвобождения частиц и энергии, называется «радиоактивным распадом». (Инфографика: Адриана Варгас/МАГАТЭ)
Каковы наиболее распространенные типы радиоактивного распада? Как мы можем защитить себя от вредного воздействия возникающего в результате излучения?
Существуют различные типы радиоактивного распада, вызывающего ионизирующее излучение, в зависимости от типа частиц или волн, которые испускает ядро, чтобы стать стабильным. Наиболее распространенными типами являются альфа-частицы, бета-частицы, гамма-лучи и нейтроны.
Альфа-излучение
Альфа-распад (Инфографика: А. Варгас/МАГАТЭ)
При альфа-излучении распадающиеся ядра испускают тяжелые, положительно заряженные частицы, чтобы стать более стабильными. Эти частицы не способны проникнуть через нашу кожу и причинить вред, и часто их можно остановить даже при помощи листа бумаги.
Однако в случае попадания альфа-излучающих материалов в организм при дыхании, с пищей или питьем, они могут воздействовать напрямую на внутренние ткани и, следовательно, наносить вред здоровью.
Америций-241, который используется в детекторах дыма по всему миру, является примером атома, распадающегося с испусканием альфа-частиц.
Бета-излучение
Бета-распад (Инфографика: А. Варгас/МАГАТЭ)
При бета-излучении ядра испускают более мелкие частицы (электроны), которые обладают большей проникающей способностью, чем альфа-частицы, и могут пройти, например, через 1–2 сантиметра воды, в зависимости от их энергии. Как правило, лист алюминия толщиной в несколько миллиметров может остановить бета-излучение.
К нестабильным атомам, испускающим бета-излучение, относятся водород-3 (тритий) и углерод-14. Среди прочего тритий используется, например, в аварийном освещении, для обозначения выходов в темноте. Это связано с тем, что свечение люминесцентного материала возникает под воздействием бета-излучения трития без использования электричества. Углерод-14 используется, например, для определения возраста объектов наследия.
Гамма-излучение
Кобальт-60 используется в лечении рака из-за его способности испускать гамма-излучение, которое может быть использовано для борьбы с опухолями. Упрощенный механизм приведен на рисунке выше. Сначала ядро кобальта-60 испускает бета-излучение, что приводит к его превращению в никель-60 в высокоэнергетическом состоянии (*Ni-60). Ядро в этом состоянии быстро теряет энергию, испуская две гамма-частицы, в результате чего образуется стабильный никель-60 (Инфографика: А. Варгас/МАГАТЭ).
Гамма-излучение, которое используется в различных применениях, например, для лечения рака, является электромагнитным излучением, подобным рентгеновскому. Некоторые гамма-лучи проходят через тело человека, не причиняя вреда, в то время как другие поглощаются организмом и могут причинить вред. Толстые стены из бетона или свинца могут снизить интенсивность гамма-излучения до уровней, представляющих меньший риск. Именно поэтому стены процедурных кабинетов радиотерапии в онкологических больницах имеют такую большую толщину.
Нейтроны
Ядерное деление внутри ядерного реактора является примером радиоактивной цепной реакции, поддерживаемой нейтронами (Инфографика: А. Варгас/МАГАТЭ)
Нейтроны — это относительно массивные частицы, которые являются одним из основных компонентов ядра. Они не имеют заряда и поэтому напрямую не вызывают ионизацию. Но их взаимодействие с атомами вещества может привести к возникновению альфа-, бета-, гамма- или рентгеновского излучения, которое затем приводит к ионизации. Нейтроны обладают проникающей способностью и могут быть остановлены только большими объемами бетона, воды или парафина.
Нейтроны могут быть получены различными способами, например, внутри ядерных реакторов или в процессе ядерных реакций, запущенных обладающими высокой энергией частицами в пучках ускорителей. Нейтроны могут являться значительным источником косвенно ионизирующего излучения.
Какую роль играет МАГАТЭ?
- МАГАТЭ оказывает государствам-членам помощь в использовании ядерных технологий, включая излучение, в здравоохранении, сельском хозяйстве, охране окружающей среды, управлении водными ресурсами, энергетике и промышленности. Для этого МАГАТЭ оказывает помощь в проведении исследований и разработок в области практического использования радиации и радиоактивных источников, а также координирует исследовательскую деятельность и реализует проекты в разных странах по всему миру.
- В рамках своей деятельности в области гарантий и проверки МАГАТЭ следит за тем, чтобы не происходило переключения способных испускать излучение материалов с мирного использования на другие цели.
- Наконец, МАГАТЭ разрабатывает нормы безопасности и руководящие материалы по физической безопасности и обобщает наилучшую практику в области защиты людей, общества и окружающей среды от вредного воздействия ионизирующего излучения.
Материалы по теме
Теперь в открытом доступе: три новых онлайн-курса по радиационной защите пациентов (на англ. языке)
Новый модуль онлайнового обучения по требованиям безопасности МАГАТЭ в области радиационной защиты (на англ. языке)
Откуда берется ядерная энергия? Научные основы ядерной энергетики
Ресурсы по теме
- Излучение в повседневной жизни (на англ. языке)
- Радиационная защита
- Радиационная защита персонала
- Радиационная защита населения
- Радиационная защита пациентов
- Радиационная защита окружающей среды
- Что есть что в ядерной сфере
Термины
Альфа-излучение — одна из разновидностей ионизирующих излучений. Альфа-излучение представляет собой поток положительно заряженных частиц. Альфа-частицы требуют осторожного обращения, так как характеризуются высокой биоактивностью и могут вызывать ядерные реакции.
Аттенюатор представляет собой устройство, которое способно ослаблять поступающий сигнал без изменения его формы. Данное изделие выполняет роль обычного делителя напряжения. В корпусе агрегата сосредоточены микросхемы и конденсаторы. Если нужно уменьшить разные по амплитуде сигналы, то в схему включают регулируемые аппараты или дискретные переключатели.
Бета-излучение –– поток заряженных частиц (позитронов и электронов), который возникает при распаде атомных ядер веществ. β-частицы не являются составляющей частью ядра, а образуются при его превращениях.
Газоразрядные детекторы ионизирующих излучений
Детектор ионизирующего излучения (ДИИ) –– чувствительный элемент, который используется для регистрации ИИ. В основе принципа работы устройства лежит явление, возникающее при прохождении ИИ через вещество.
Гамма-излучение представляет собой электромагнитное излучение, которое принадлежит к высокочастотной части спектра волн. Гамма-излучение имеет более короткую длину волны и граничит на шкале электромагнитных волн с рентгеновскими лучами.
Датчики Гейгера — Мюллера
Для определения радиационного уровня используется специальное устройство –– дозиметр. Однако в качестве чувствительного элемента для таких приборов дозиметрического контроля применяется датчик Гейгера — Мюллера.
Детектор
Детектор излучений представляет собой устройство, которое преобразует энергию излучения в другие типы энергии, удобные для регистрации.
Дозиметр
Современный дозиметр –– специальное оборудование, основным предназначением которого является проведение замера поглощенной\экспозиционной дозы и мощности перечисленных величин за определенное время.
Дозиметрия
Дозиметрия –– раздел ядерной физики, занимающийся изучением физических величин, которые характеризуют действие ионизирующих излучений на разные организмы и предметы.
Читайте подробнее.
Интегрирующие детекторы для индивидуальной дозиметрии
Для индивидуальной дозиметрии используются интегрирующие детекторы, которые основаны на различных физических методах.
Ионизационная камера
Ионизационная камера (И. к.) — газонаполненный детектор, предназначенный для регистрации ионизирующих излучений и ядерных частиц. По своей сути ионизационная камера является электрическим конденсатором, к которому приложено напряжение в диапазоне от 10 до 100 В. Между его электродами приложена разность потенциалов. При попадании ионизирующих частиц между электродами появляются ионы газа и электроны, которые создают электрический ток.
Ионизирующее излучение представляет собой излучение, вызывающее ионизацию вещества. Источником ионизирующего излучения являются радиоактивные элементы, космические лучи, ускорители заряженных частиц, ядерные реакторы. При нормальном режиме эксплуатации рентгеновских аппаратов Ионизирующее излучение не несет радиационной опасности.
Мощность дозы
Мощность дозы (МД) – доза излучения, отнесенная к интервалу времени за который она получена.
Нейтронное излучение (Н. и.) представляет собой поток нейтронов, преобразующих энергию при взаимодействии с атомными ядрами.
Поглощенная доза
Все типы радиоактивных излучений оказывают определенное воздействие на живые организмы. Читайте подробнее.
Полупроводниковые детекторы излучений
Полупроводниковый детектор излучений (ПДИ) –– измерительный прибор, предназначенный для регистрации ИИ, основным компонентом которого является кристалл полупроводника. Данное устройство считается аналогом газовой ионизационной камеры, однако в ПДИ рабочая среда заменена конденсированной –– твердым телом. Действие устройства основано на измерении импульсов напряжения, которые возникают при возрастании проводимости кристалла.
Предельная доза
Предельная доза (ПД) — это такая доза излучения, которая при постоянном воздействии в течение длительного периода времени не вызывает ухудшения самочувствия или заболеваний.
Под протонным излучением (П. и.) понимают такое излучение, которое состоит из потока протонов. Впервые оно было обнаружено в 1886 году в разрядных трубках в виде каналовых лучей. Протонное излучение используют в радиобиологических и физических исследованиях, применяют для производства радиоактивных нуклидов, в диагностических целях, а также для лучевой терапии.
Радиометрия
Под радиометрией понимают измерение активности источника ионизирующих излучений (И.И.) или доли квантов и частиц. Радиометрия основывается на разных физических эффектах, которые возникают при воздействии излучения на вещество — ионизация, люминесценция и пр. Одним из основателей Радиометрии является Чарльз Вильсон, который изобрел камеру Вильсона. Также можно назвать Ханса Гейгера, создавшего счетчик заряженных частиц в 1908 году.
Под рентгеновским излучением понимают вид электромагнитного излучения. Впервые X-лучи были открыты ученым В. Рентгеном в далеком 1895 году. Они представляют собой электромагнитные волны и располагаются на шкале электромагнитных волн между УФ излучением и γ-излучением.
Связь между поглощенной дозой и экспозиционной дозой
Под поглощенной дозой понимают такую дозу, которая характеризует энергию излучения, переданную единице массы вещества. Однако определить поглощенную в организме энергию невозможно.
Сцинтилляционные детекторы и счетчики
Сцинтилляционный счетчик –– специальный прибор, предназначенный для обнаружения и регистрации элементарных частиц. Считывание осуществляется благодаря использованию светочувствительных систем. Устройство состоит из сцинтиллятора, генерирующего фотоны и фотодетектора, который преобразует свет в сигнал. Впервые данный прибор был использован для измерения излучения урана в далеком 1944 году.
Эквивалентная доза
Исследования облучения организмов показало, что различные виды радиации при одинаковых поглощенных дозах (ПД) производят разное воздействие на человеческий организм.
Читайте подробнее.
Экспозиционная доза
Общее количество энергии излучения, падающей на объект за время облучения, может быть получено измерением экспозиционной дозы (ЭД).
Читайте подробнее.
Элементарные частицы и их типы
Элементарной считается частица, размеры которой недоступны измерению. Основным свойством таких частиц является их способность к взаимопревращению. Элементарные частицы классифицируются по типу взаимодействия, в которое они вступают.
Эффективная доза
Эффективная доза (ЭД) — величина, которая используется в качестве меры риска появления отдаленных последствий облучения тканей и органов с учетом их чувствительности к радиации.
Читайте подробнее.
Источниками ионизирующего излучения называют объекты, которые с помощью радиационных элементов и технических устройств способны образовывать ионизирующее излучение. Другими словами, поток положительно или отрицательно заряженных частиц. Искусственные источники ионизирующего излучения используются в различных отраслях: медицина, ядерная энергетика, научные исследования, при техническом осмотре объектов и других.
Радиационные ускорители представляют собой электрофизические устройства, позволяющие получить заряженные частицы или ионы. Такие ускоренные частицы могут использоваться для получения изображений на экране (ТВ или электромикроскопа), получения рентген-излучения, стерилизации, а также для терапии онкозаболеваний и точечного уничтожения больных клеток.
Ионизирующее излучение, которое также может называться радиацией, представляет собой электромагнитное излучение с потоком частиц, способных ионизировать вещество. Другими словами, образовать ионы (положительные или отрицательные) из нейтрально заряженных атомов или молекул. Электрофизический объект, способный с помощью технического устройства и радиоактивных элементов генерировать и испускать ионизирующее излучение, называют источником ионизирующего излучения или ИИИ
Аэрозоли представляют собой систему твердых и жидких веществ, образующих взвесь в газовой среде. Радиоактивные аэрозоли отличаются от обычных ионизированными частицами. Их состав и свойства таких зависят от происхождения, природы веществ, из которых состоят частицы, концентрации и среды.
Радиационное оборудование является потенциально опасным и требует точности в соблюдении нормативов установки и эксплуатации. Кроме того, вокруг таких объектов существует особая радиационно-опасная зона, в которой не рекомендовано длительное нахождение. Мощность дозы ионизирующего излучения в непосредственной близости к источнику может превышать 0,1 мбэр/ч. Длительное воздействие опасно для здоровья и жизни человека.
Радиационная установка с ускорителем электронов (РУ УЭЛ) относится к электрофизическому типу оборудования. Источником ионизирующего излучения в ней является ускоритель электронов. Принципом работы такой установки является облучение различных объектов радиационным излучением. Метод является современным и требует соблюдения нормативов санитарных правил.
Радиационные вещества, особенно в большой концентрации, являются потенциально опасными. Ситуация, когда их эксплуатация выходит из-под контроля и вызывает распространение радиоактивных продуктов или ионизирующих лучей, называется радиационной аварией. Такие случаи могут нести в себе большую угрозу, так как неконтролируемое облучение приносит серьезный вред людям и окружающей среде.
Ядерная медицина – отрасль клинической медицины, использующая для лечения и диагностики заболеваний радиационные нуклиды. Отличается быстрой, безболезненной и точной постановкой диагноза практически любого органа человека и эффективным лечением онкозаболеваний.
Радионуклиды — это атомы, обладающие избыточной ядерной энергией и способные к радиоактивным превращениям (распаду). Их ядра нестабильны и способны выбивать электроны из атомов и присоединять их к другим атомам, образуя пары положительных и отрицательных ионов. Это явление более широко известно, как радиоактивное излучение.
Радиохирургия или, как принято ее называть официально, стереотаксическия радиотерапия это современный способ лечения доброкачественных и злокачественных новообразований. Оно заключается в высокоточном однократном облучении опухоли высокой дозой ионизирующего излучения, вызывающего гибель клеток. При этом, окружающие ткани и организм в целом получают минимальное количество облучения.
Радиотерапия имеет множество синонимичных названий — лучевая терапия, радиационная терапия, радиационная онкология, рентгенотерапия, телегамматерапия, электронотерапия, нейтронная терапия и другие. Все это обозначает один и тот же метод лечения злокачественных опухолей – направленное использование радиации для уничтожения патогенных клеток.
Рентгеновский аппарат
Рентгеновский аппарат – медицинское оборудование, позволяющее получать аналитическую информацию о состоянии здоровья пациента и точно диагностировать ряд заболеваний. Метод является неинвазивным и безболезненным, поэтому широко используется в медицине.
Нуклид
Нуклид — вид атома, который характеризуется определенным числом нейтронов и протонов.
Изотоп
Изотопы –химические элементы, которые имеют разные массовые числа и одинаковое зарядное число. Первые экспериментальные исследования проводились в начале XX века. Ученым Ф. Содди был предложено и само понятие «изотоп».
Рабочая камера радиационной установки
Под рабочей камерой понимают конструктивную часть радиационной установки (РУ), в которой осуществляется радиационный процесс. Она предназначена для обеспечения безопасности персонала.
Пультовая (комната управления)
Пультовая (комната управления) представляет собой специальное помещение, в котором осуществляется контроль за работой РУ и установлен пульт управления.
Полем ионизирующего излучения называется распределение ИИ в рассматриваемой среде. Более полная информация о поле ИИ задается распределением частиц в пространстве, во времени и по энергии.
Под вторичным ионизирующим излучением понимают излучение, которое возникает при взаимодействии первичного ИИ с рассматриваемой средой. Вторичные эффекты ИИ появляются на уровне макромолекул. К ним относятся характеристическое рентгеновское излучение, увеличение скорости молекулярного движения, люминесценция, а также химические реакции.
Ионизирующее излучение характеризуется высокой биоактивностью. Оно способно индуцировать длительно протекающие реакции и разрывать химические связи. Первичное ИИ на организм бывает косвенным и непосредственным. В последнем случае происходит расщепление молекул и атомов вещества, образование ионов и радикалов. Активные молекулы индуцируют разные реакции. Происходят генетические мутации, физиологические эффекты.
Под открытыми источниками ионизирующего излучения (ИИИ) понимают такие источники излучения, при применении которых осуществляется распространение радиоактивных веществ во внешнюю среду. Опасность работы с открытыми ИИИ связана с возможностью попадания радионуклидов внутрь организма, что приводит к облучению.
Непосредственно ионизирующее излучение
Непосредственно ионизирующее излучение (НИИ) состоит из частиц, энергия которых достаточна для ионизации при взаимодействии с атомами вещества (протонное излучение ускорителей, β- и α-излучение радионуклидов).
Косвенно ионизирующее излучение
Косвенно ионизирующее излучение (КИИ) — электромагнитное излучение и излучение квазичастиц, которые не вызывают самостоятельно ионизации и при соприкосновении со средой создают в ней ИИ или провоцируют ядерные реакции. Образовавшиеся ядра отдачи и вторичные электроны производят ионизацию вещества.
Корпускулярное излучение
Под корпускулярным излучением понимают поток заряженных частиц (нейтронов, электронов, α-частиц, β-частиц), масса которых не равна нулю.
Конструирование источников ионизирующего излучения
Конструирование источников ионизирующего излучения – особый вид работ, которые связаны с отработкой на практике различных средств радиационной защиты (СРЗ) и элементов устройств ИИИ. Также сюда входит создание образцов установок с целью их серийного производства.
Закрытые источники ионизирующего излучения
Закрытыми называются любые ИИИ, устройство которых не подразумевает попадание радиоактивных веществ во внешнюю среду при заданных эксплуатационных условиях. При работе с закрытыми ИИИ персонал предприятия может подвергаться лишь внешнему облучению, поэтому все мероприятия по защите людей проводятся с учетом данного обстоятельства.
Деятельность в области использования ИИИ
Под деятельностью в сфере использования ИИИ подразумевают лицензируемые виды работ, которые связаны с разработкой, изготовлением, установкой, эксплуатацией, техобслуживанием и утилизацией установок, содержащих ИИИ. При использовании ИИИ требуется получение лицензии в порядке, предусмотренном российским законодательством.
Обратная связь
Нужна консультация?
Позвоните нам по номеру
+7 (495) 323–77–55 или оставьте свои контакты и мы вам перезвоним
Фотографии