Мощность на валу насосов, вентиляторов и компрессоров
На основании заданной для вентилятора или насоса подачи и суммарного напора, а для компрессора — подачи и удельной работы сжатия — определяется мощность на валу, в соответствии с которой может быть осуществлен выбор мощности приводного двигателя.
Для центробежного вентилятора, например, формула определения мощности на валу выводится из выражения энергии, сообщаемой движущемуся газу в единицу времени.
Пусть F — сечение газопровода, м2; m — масса газа за секунду, кг/с; v — скорость движения газа, м/с; ρ — плотность газа, м3; ηв, ηп — кпд вентилятора и передачи.
Тогда выражение для энергии движущегося газа примет вид:
откуда мощность на валу приводного двигателя, кВт,
В формуле можно выделить группы величин, соответствующих подаче, м3/с, и напору вентилятора, Па:
Из приведенных выражений видно, что
здесь с, с1 с2 — постоянные величины.
Отметим, что вследствие наличия статического напора и конструктивных особенностей центробежных вентиляторов показатель степени в правой части может отличаться от 3.
Аналогично тому, как это было сделано для вентилятора, можно определить мощность на валу центробежного насоса, кВт, которая равна:
где Q — подача насоса, м3/с;
Нг— геодезический напор, равный разности высот нагнетания и всасывания, м; Нс — суммарный напор, м; P2 — давление в резервуаре, куда перекачивается жидкость, Па; P1 — давление в резервуаре, откуда перекачивается жидкость, Па; ΔН — потеря напора в магистрали, м; зависит от сечения труб, качества их обработки, кривизны участков трубопровода и т. д.; значения ΔН приводятся в справочной литературе; ρ1 — плотность перекачиваемой жидкости, кг/м3; g = 9,81 м/с2 — ускорение свободного падения; ηн, ηп — к. п. д. насоса и передачи.
С некоторым приближением для центробежных насосов можно принять, что между мощностью на валу и скоростью существует зависимость Р = сω 3 и М = сω 2 . Практически показатели степени у скорости меняются в пределах 2,5— 6 для различных конструкций и условий работы насосов, что необходимо учитывать при выборе электропривода.
Указанные отклонения определяются для насосов наличием напора магистрали. Отметим попутно, что очень важным обстоятельством при выборе электропривода насосов, работающих на магистрали с высоким напором, является то, что они весьма чувствительны к снижению скорости двигателя.
Основной характеристикой насосов, вентиляторов и компрессоров является зависимость развиваемого напора Н от подачи этих механизмов Q. Указанные зависимости представляются обычно в виде графиков НQ для различных скоростей механизма.
На рис. 1 в качестве примера приведены характеристики (1, 2, 3, 4) центробежного насоса при различных угловых скоростях его рабочего колеса. В тех же координатных осях нанесена характеристика магистрали 6, на которую работает насос. Характеристикой магистрали называется зависимость между подачей Q и напором, необходимым для подъема жидкости на высоту, преодоления избыточного давления на выходе из нагнетательного трубопровода и гидравлических сопротивлений. Точки пересечения характеристик 1,2,3 с характеристикой 6 определяют значения напора и производительности при работе насоса на определенную магистраль при различных скоростях.
Рис. 1. Зависимость напора Н насоса от его подачи Q.
Пример 1. Построить характеристики Н, Q центробежного насоса для различных скоростей 0,8ωн; 0,6ωн; 0,4ωн, если характеристика 1 при ω = ωн задана (рис. 1).
1. Для одного и того же насоса
2. Построим характеристику насоса для ω = 0,8ωн.
Таким образом, можно построить вспомогательные параболы 5, 5′, 5″. которые на оси ординат при Q = 0 вырождаются в прямую, и характеристики QH для различных скоростей насоса.
Мощность двигателя поршневого компрессора может быть определена на основании индикаторной диаграммы сжатия воздуха или газа. Такая теоретическая диаграмма приведена на рис. 2. Некоторое количество газа сжимается в соответствии с диаграммой от начального объема V1 и давления P1 до конечного объема V2 и давления P2.
На сжатие газа затрачивается работа, которая будет различна в зависимости от характера процесса сжатия. Этот процесс может осуществляться по адиабатическому закону без отдачи тепла, когда индикаторная диаграмма ограничена кривой 1 на рис. 2; по изотермическому закону при постоянной температуре, соответственно кривая 2 на рис. 2, либо по политропе кривая 3, которая показана сплошной линией между адиабатой и изотермой.
Рис. 2. Индикаторная диаграмма сжатия газа.
Работа при сжатии газа для политропического процесса, Дж/кг, выражается формулой
где n — показатель политропы, определяемый уравнением pV n = const; P1 — начальное давление газа, Па; P2 — конечное давление сжатого газа, Па; V1 — начальный удельный объем газа, или объем 1 кг газа при всасывании, м3.
Мощность двигателя компрессора, кВт, определяется выражением
здесь Q — подача компрессора, м3/с; ηк — индикаторный к. п. д. компрессора, учитывающий потери мощности в нем при реальном рабочем процессе; ηп — к. п. д. механической передачи между компрессором и двигателем. Так как теоретическая индикаторная диаграмма существенно отличается от действительной, а получение последней не всегда возможно, то при определении мощности на валу компрессора, кВт, часто пользуются приближенной формулой, где исходными данными являются работа изотермического и адиабитического сжатия, а также к. п. д. компрессора, значения которых приводятся в справочной литературе.
Эта формула имеет вид:
где Q — подача компрессора, м3/с; Аи — изотермическая работа сжатия 1 м3 атмосферного воздуха до давления Р2, Дж/м3; Аа — адиабатическая работа сжатия 1 м3 атмосферного воздуха до давления Р2, Дж/м3.
Зависимость между мощностью, на валу производственного механизма поршневого типа и скоростью совершенно отлична от соответствующей зависимости для механизмов с вентиляторным характером момента на валу. Если механизм поршневого типа, например насос, работает на магистраль, где поддерживается постоянный напор Н, то очевидно, что поршню при каждом ходе приходится преодолевать постоянное среднее усилие независимо от скорости вращения.
Среднее значение мощности
но так как Н = const, то
Следовательно, среднее значение момента на валу насоса поршневого типа при постоянном противодавлении не зависит от скорости:
Мощность на валу центробежного компрессора, так же как у вентилятора и насоса, с учетом сделанных ранее оговорок пропорциональна третьей степени угловой скорости.
На основании полученных формул определяется мощность на валу соответствующего механизма. Для выбора двигателя в указанные формулы следует подставить номинальные значения подачи и напора. По полученной мощности может быть выбран двигатель продолжительного режима работы.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Расчет мощности двигателя
Как правило, мощность электродвигателя указывается на шильдике, который закреплен на корпусе или в техническом паспорте устройства. Однако в случае, когда данные на шильдике прочитать невозможно, а документация утеряна, определить мощность можно несколькими способами. Сегодня мы расскажем о двух наиболее надежных них.
Мощность электродвигателя по установочным и габаритным размерам
Понравилось видео? Подписывайтесь на наш канал!
Для первого способа необходимо знать установочные размеры электродвигателя и синхронную частоту вращения. Последняя измеряется с помощью мультиметра, установленного в режим миллиамперметра. Для этого указатель колеса выбора устанавливаем на значение 100µA. Щуп черного цвета подключаем в общее гнездо «COM», а щуп красного цвета — к гнезду для измерения напряжения, сопротивления и силы тока до 10 А.
После этого обесточиваем электродвигатель и снимаем крышку с клеммной коробки. Щупы мультиметра подключаем к началу и концу любой из обмоток (например, V1 и V2). После этого рукой медленно проворачиваем вал двигателя так, чтобы он совершил один оборот, и считаем количество отклонений стрелки из состояния покоя, которые она сделает за это время. Число отклонений стрелки за один оборот вала равно количеству полюсов и соответствует такой синхронной частоте вращения:
• 2 полюса – 3000 об/мин;
• 4 полюса – 1500 об/мин;
• 6 полюсов – 1000 об/мин;
• 8 полюсов – 750 об/мин.
Теперь необходимо выяснить установочные размеры двигателя. Для замеров используем штангенциркуль, механический или электронный, а также измерительную рулетку. Записываем результаты измерений в миллиметрах: диаметр и длину вылета вала, высоту оси вращения, расстояние между центрами отверстий в «лапах», а если двигатель фланцевый, то диаметр фланца и диаметр крепежных отверстий.
Расчет мощности насоса
Для проверки правильности подбора насоса нужно проверить запас мощности двигателя.
Наш калькулятор проверки мощности Вам в этом поможет.
Вы можете предотвратить факт искуственного занижения мощности стронних производителей.
Предупреждение. Перегруженные насосы имеют сокращенный срок службы. Первыми ломаются подшипники и торцевые уплотнения.
Расчет мощности на валу насоса
Для расчета мощности насоса необходимо заполнить все поля
Производительность (м 3 /ч):
Напор (м):
Плотность жидкости (кг/дм 3 ):
КПД насоса (%):
Мощность насоса (кВт):
Рассчитать
Расчет параметров центробежного насоса, при изменении частоты вращения
Данный калькулятор способен расчитать основные параметры насоса при изменении частоты вращения. Для этого необходимо внести в первую таблицу четыре параметра.
Расчет параметров центробежного насоса, при изменении частоты вращения
Данный калькулятор способен расчитать основные параметры насоса при изменении частоты вращения. Для этого необходимо внести в первую таблицу четыре параметра:
- Исходную подачу, м 3 /ч
- Напор, (м. в. ст.)
- Обороты электродвигателя, (об/мин)
- Частота, (Гц)
Далее, нужно ввести новые обороты электор двигателя, при которых должны расчитываться параметры. Все вычисления происходят по формулам, представленым ниже. Три нижних пустых поля используются для вывода результатов. Также вы сможете увидеть всё на графике.
Индексами 1 и 2 помечены начальные и новые параметры соответственно. Для того, чтобы подсчитать напор или подачу, в обязательном порядке необходимо заполнить исходную подачу, исходный напор, обороты электродвигателя исходные n1 и новые n2.
где F — частота, H — напор, Q — подача, n — обороты электродвигателя
Определение мощности электродвигателя без бирки
Общепромышленные асинхронные электродвигатели имеют срок службы и подлежат периодичной замене, ремонту. Дефекты электрической части, замыкание, обрывы, износ подшипников, перемотка, нарушение центровки, сырая обмотка. При отсутствии паспорта, бирки на двигателе возникает вопрос: как узнать мощность электродвигателя без таблички или технических характеристик?
Параметры для определения мощности электродвигателя:
- По диаметру, длине вала
- По габаритным, крепежным размерам
- По току холостого хода
- По сопротивлению обмоток изоляции
Определение мощности двигателя по диаметру вала и длине
Простейшие способы определения мощности и марки двигателя – габаритные размеры – вал или крепежные отверстия. В таблице указаны длины и диаметры валов (D1) и длина (L1) для каждой модели асинхронного промышленного трехфазного мотора. Габариты электродвигателей АИР:
Мощность, (Р) кВт | 3000 об/мин | 1500 об/мин | 1000 об/мин | 750 об/мин | ||||
D1, мм | L1, мм | D1, мм | L1, мм | >D1, мм | L1, мм | D1, мм | L1, мм | |
1,5 | 22 | 50 | 22 | 50 | 24 | 50 | 28 | 60 |
2,2 | 24 | 28 | 60 | 32 | 80 | |||
3 | 24 | 32 | 80 | |||||
4 | 28 | 60 | 28 | 60 | 38 | |||
5,5 | 32 | 80 | 38 | |||||
7,5 | 32 | 80 | 38 | 48 | 110 | |||
11 | 38 | 48 | 110 | |||||
15 | 42 | 110 | 48 | 110 | 55 | |||
18,5 | 55 | 60 | 140 | |||||
22 | 48 | 55 | 60 | >140 | ||||
30 | 65 | |||||||
37 | 55 | >60 | 140 | 65 | 75 | |||
45 | 75 | 75 | ||||||
55 | 65 | 80 | 170 | |||||
75 | 65 | 140 | 75 | 80 | 170 | |||
90 | 90 | |||||||
110 | 70 | 80 | 170 | 90 | ||||
132 | 100 | 210 | ||||||
160 | 75 | 90 | 100 | 210 | ||||
200 | ||||||||
250 | 85 | 170 | 100 | 210 | ||||
315 | — | — |
Каталог маркировок электродвигателей АИР
Мощность, кВт | Марка асинхронного трехфазного электродвигателя | |||
3000 об/мин | 1500 об/мин | 1000 об/мин | 750 об/мин | |
0,18 | АИР 56 А2 | АИР 56 В4 | — | — |
0,25 | АИР 56 В2 | АИР 63 А4 | АИР 63 В6 | АИР 71 В8 |
0,37 | АИР 63 А2 | АИР 63 В4 | АИР 71 А6 | АИР 80 А8 |
0,55 | АИР 63 В2 | АИР 71 А4 | АИР 71 В6 | АИР 80 В8 |
0,75 | АИР 71 А2 | АИР 71 В4 | АИР 80 А6 | АИР 90 LA8 |
1,1 | АИР 71 В2 | АИР 80 А4 | АИР 80 В6 | АИР 90 LB8 |
1,5 | АИР 80 А2 | АИР 80 В4 | АИР 90 L6 | АИР 100 L8 |
2,2 | АИР 80 В2 | АИР 90 L4 | АИР 100 L6 | АИР 112 МА8 |
3 | АИР 90 L2 | АИР 100 S4 | АИР 112 МА6 | АИР 112 МВ8 |
4 | АИР 100 S2 | АИР 100 L4 | АИР 112 МВ6 | АИР 132 S8 |
5,5 | АИР 100 L2 | АИР 112 М4 | АИР 132 S6 | АИР 132 М8 |
7,5 | АИР 112 М2 | АИР 132 S4 | АИР 132 М6 | АИР 160 S8 |
11 | АИР 132 М2 | АИР 132 М4 | АИР 160 S6 | АИР 160 М8 |
15 | АИР 160 S2 | АИР 160 S4 | АИР 160 М6 | АИР 180 М8 |
18,5 | АИР 16 0М2 | АИР 160 М4 | АИР 180 М6 | АИР 200 М8 |
22 | АИР 180 S2 | АИР 180 S4 | АИР 200 М6 | АИР 200 L8 |
30 | АИР 180 М2 | АИР 180 М4 | АИР 200 L6 | АИР 225 М8 |
37 | АИР 200 М2 | АИР 200 М4 | АИР 225 М6 | АИР 250 S8 |
45 | АИР 200 L2 | АИР 200 L4 | АИР 250 S6 | АИР 250 М8 |
55 | АИР 225 М2 | АИР 225 М4 | АИР 250 М6 | АИР 280 S8 |
75 | АИР 250 S2 | АИР 250 S4 | АИР 280 S6 | АИР 280 М8 |
90 | АИР 250 М2 | АИР 250 М4 | АИР 280 М6 | АИР 315 S8 |
110 | АИР 280 S2 | АИР 280 S4 | АИР 315 S6 | АИР 315 М8 |
132 | АИР 280 М2 | АИР 280 М4 | АИР 315 М6 | АИР 355 S8 |
160 | АИР 315 S2 | АИР 315 S4 | АИР 355 S6 | АИР 355 МВ8 |
200 | АИР 315 М2 | АИР 315 М4 | АИР 355 М6 | — |
250 | АИР 355 S2 | АИР 355 S4 | АИР 355 МВ6 | — |
315 | АИР 355 М2 | АИР 355 М4 | — | — |