Что образуют электроны вылетающие из катода
Перейти к содержимому

Что образуют электроны вылетающие из катода

  • автор:

2. Термоэлектронная эмиссия и ее применение.

Исследование закономерностей термоэлектронной эмиссии можно провести с помощью двухэлектродной лампы (электровакуумного диода), представляющего собой стеклянный или металлический баллон, из которого откачан воздух. Внутри находятся два электрода — катод (К) и анод (А). Катодом служит нить из тугоплавкого металла (вольфрама), накаливаемая электрическим током. Анод чаще всего имеет форму металлического цилиндра, окружающего катод.

Включим диод в электрическую цепь, как показано на рис.2. В этой схеме ток источника Ԑ1 нагревает катод до высокой (более 1000 о С) температуры. Источник Ԑ2 создает разность потенциалов между катодом и анодом, измеряемую вольтметром V . Анодное напряжение считается положительным, если потенциал анода выше потенциала катода. Ток в анодной цепи измеряется миллиамперметром (мА).

Обычно при постоянной температуре накаленного катода определяют зависимость анодного тока IA от анодного напряжения UА. Данная зависимость называется вольтамперной характеристикой (ВАХ) диода. Она представлена на рис.3. Как видно, ВАХ диода является нелинейной (т. е. не укладывается на прямую линию). Следовательно, для вакуумного диода закон Ома не выполняется.

При Ua = 0 анодный ток I0 мал, но отличен от нуля. Вылетевшие из катода электроны образуют вокруг него отрицательный пространственный заряд – электронное облако, которое отталкивает вылетающие из катода электроны и большинство из них возвращает обратно к катоду. Образование электронного облака над поверхностью раскаленного металла представляет собой явление, аналогичное испарению жидкости. Но небольшое число электронов обладают энергией, достаточной для преодоления как работы выхода, так и отталкивающего действия электронного облака. Такие электроны достигают анода даже без приложения электрического поля. Именно они и создают ток I0.

В области малых положительных значений Ua анодный ток IA резко возрастает. Этот участок вольтамперной характеристики описывается законом

трех вторых, полученным теоретически Богуславским и и Ленгмюром:

(3)

где k — коэффициент, зависящий от формы и размеров электродов и их взаимного расположения.

На данном участке зависимости происходит быстрое рассасывание основной массы электронного облака. При дальнейшем увеличении анодного напряжения наблюдается слабый рост анодного тока, соответствующий плавному рассасыванию оставшейся массы электронного облака. Этот рост постепенно замедляется и при некотором значении анодного напряжения ток достигает значения IН, называемого током насыщения, и не изменяется с ростом анодного напряжения. Это означает, что электронное облако полностью рассосалось и не оказывает никакого тормозящего действия на электроны, эмитированные с катода: они все достигают анода. Поэтому дальнейшее увеличение напряжения не может привести к увеличению силы тока. Плотность тока насыщения характеризует эмиссионную способность катода, которая зависит от природы катода и его температуры.

При дальнейшем увеличением UА до нескольких сотен вольт плоский участок ВАХ сменяется слабым ростом I. Это обусловлено уменьшением работы выхода электрона из металла под действием электрического поля и носит название эффекта Шоттки.

Рис. 3. Вольтамперная характеристика диода

Как отмечалось, применяя активированные катоды, удается снизить работу выхода и получить необходимую величину тока насыщения при значительно более низких температурах катода, что приводит к значительному увеличению срока его работы. Это явление используется в приборах, в которых необходимо получить поток электронов в вакууме: в электронных лампах, электронно-лучевых трубках, рентгеновских трубках, электронных микроскопах и т. д.

С увеличением температуры катода увеличивается число эмитированных в единицу времени электронов и ток насыщения возрастает. При этом увеличивается и значение анодного напряжения, при котором наступает насыщение (рис. 3 ).

При отрицательном напряжении (потенциал катода выше потенциала анода) ток в анодной цепи быстро уменьшается и в дальнейшем прекращается, т.е. вакуумный диод обладает односторонней проводимостью, что позволяет применять его в качестве выпрямителя.

термоэлектронная эмиссия

видатні фізики

ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ -испускание электронов нагретыми телами (эмиттерами) в вакуум или др. среду. Выйти из тела могут только те электроны, энергия к-рых больше энергии покоящегося вне эмиттера электрона (см. Работа выхода ).Число таких электронов (обычно это электроны с энергиями 5018-26.jpg1 эВ относительно ферми-уровня в эмиттере) в условиях термодинамич. равновесия в соответствии с Ферми-Дирака распределением ничтожно мало при темп-pax T5018-27.jpg300 К и экспоненциально растёт с T. Поэтому ток T. э. заметен только для нагретых тел. Вылет электронов приводит к охлаждению эмиттера. При отсутствии «отсасывающего» электрич. поля (или при малой его величине) вылетевшие электроны образуют вблизи поверхности эмиттера отрицательный пространств. заряд, ограничивающий ток T. э.

Основные соотношения. При малых напряжениях V между эмиттером и анодом плотность тока моноэнергетич. электронов описывается известной ф-лой (закон трёх вторых) j~ V 3/2 (см. Ленгмюра формула); учёт разброса скоростей электронов, преодолевающих созданный пространств. зарядом потенц. барьер, значительно усложняет ф-лу, но характер зависимости j(V)не изменяется; при увеличении V пространств. заряд рассасывается и ток достигает насыщения j 0 , а при дальнейшем росте V ток слабо растёт в соответствии с Шоттки эффектом (рис.)- В сильных (E > 10 6 В/см) электрич. полях к T. э. добавляется автоэлектронная эмиссия (термоавтоэлектронная эмиссия).

5018-28.jpg

Выражение для плотности тока насыщения j 0 в силу принципа детального равновесия может быть получено путём расчёта потока электронов из вакуума в эмиттер. В условиях термодинамич. равновесия этот поток должен совпадать с потоком электронов, вылетающих в вакуум. В предположении, что поверхность эмиттера однородна, внеш. поле мало, а коэф. отражения электронов от поверхности эмиттера в вакууме r в области энергий ~ kT вблизи уровня вакуума слабо зависит от энергии и не слишком близок к единице, такой расчёт приводит к ф-ле (ф о рм у л а Р и ч а р д с о н а — Д е ш м а н а)

5018-29.jpg

5018-30.jpg

Здесь A=A 0 (1-) (черта над r означает усреднение по энергиям электронов), A 0 = 4pek 2 m e /h= 120,4 А/см 2. К 2 , F — работа выхода электрона. Предположение о слабой зависимости r от энергии нарушается лишь в исключительных (но всё же реальных) случаях, когда уровень вакуума попадает внутрь одной из запрещённых зон в электронном спектре твёрдого тела или соответствует к—л. др. особенностям в спектрах объёмных и поверхностных состояний. Работа выхода металлов слабо зависит от темп-ры (вследствие теплового расширения); обычно эта зависимость линейная: F = F 0 + aT, a~10 -4 -10 -5 эВ/град; причём коэф. a может быть как положителен, так и отрицателен. По этой причине, однако, определяемые путём построения графика зависимости j 0 /T 2 от 1/T в полулогарифмич. координатах (метод прямых Ричардсона) величины отличаются от F и А из ф-лы (*). Для большинства чистых металлов найденные т. о. значения А изменяются от 15 до 350 А/см 2. К 2 .

Влияние примесей и дефектов. Поверхностные примеси и дефекты даже при малой их концентрации (5018-31.jpg10 монослоя) могут оказывать значит. влияние на термоэмиссионные свойства металлов и полупроводников и приводят к заметному разбросу значений работы выхода (5018-32.jpg0,1 эВ). К числу таких эмиссионно активных примесей относятся, напр., атомы щелочных и щёлочно-земельных элементов и их окислы. Возникающая при адсорбции атомов и молекул квантовохим. связь индуцирует перераспределение зарядов между адсорбируемыми атомами (а д а т о м а м и) и собственными поверхностными атомами эмиттера. На больших расстояниях от адатома создаваемый этими зарядами потенциал может быть описан в терминах муль-типольного разложения, т. е. в виде суммы дипольного, квадрупольного и т.д. потенциалов. Изменение работы выхода (дипольный скачок потенциала) определяется ди-польными моментами DФ = 4peN s d, где N s — поверхностная концентрация адатомов, d-дипольный момент. При значениях d порядка неск. Д (1 Д=10 -18 ед. СГСЕ) уже малые кол-ва примесей (N 5 5018-33.jpg10 12 -10 13 см -2 ), составляющие всего 0,1-0,01 монослойного покрытия, приводят к заметным изменениям работы выхода: DF~10 -2 — 10 -1 эВ. Эмиссионно активные примеси как раз и характеризуются высокими значениями d~1-10 Д; рекордные значения d~ 10 Д соответствуют адсорбции цезия. Изменение работы выхода описывает усреднённое вдоль поверхности изменение потенциала. Микроскопич. структура индуцируемого адатомами вблизи поверхности потенциала сложна. В частности, на нек-рой части поверхности существует потенц. барьер, затрудняющий вылет в вакуум электронов с энергиями, близкими к пороговым. Однако в большинстве случаев d~ 1 Д и при таких d барьеры туннельно проницаемы — «прозрачны». В этих случаях изменения связаны с квантовомеханич. рассеянием и интерференцией электронов. Примеси и дефекты могут стимулировать перестройку поверхности, что также влияет на эмиссионные свойства. Кроме адсорбции примесных атомов на поверхности, источниками её загрязнения могут служить процессы сегрегации и поверхностной диффузии, весьма эффективные при повыш. темп-pax. Для устранения неконтролируемого влияния загрязняющих примесей и получения воспроизводимых результатов при изучении эмиссионных свойств поверхностей необходимо производить измерения в условиях сверхвысокого вакуума ~10 -9 — 10 -10 мм рт. ст. (поток атомов из газовой среды на поверхность, создающий за 1 с монослойные покрытия, соответствует при комнатной темп-ре давлению ~ 10 -6 мм рт. ст.); при этом необходим контроль за составом и структурой поверхности с помощью совр. методов спектроскопии поверхности. Наилучшие объекты для изучения механизмов эмиссии — отд. грани монокристаллов переходных металлов, допускающие высокую степень очистки и отличающиеся высоким совершенством структуры поверхности.

Потенциал сил изображения (ПСИ), не являющийся элек-тростатич. потенциалом и не удовлетворяющий Пуассона уравнению в вакууме, описывает потенц. энергию взаимодействия электрона с эмиттером. ПСИ даёт заметный вклад в работу выхода (5018-34.jpg1 эВ) и проявляется обычно на расстояниях от поверхности z5018-35.jpg100 А. Его особые свойства связаны с «кулоновским» видом зависимости от координат V~z -1 (вплоть до расстояний от поверхности порядка межатомных). Движение электрона в поле такого потенциала оказывается существенно квантовым. При этом ввиду формальной аналогии анализ решений соответствующего ур-ния Шрёдингера и свойства самих решений близки к случаю обычного 3-мерного кулоновского потенциала. В частности, если электрон не может проникнуть внутрь эмиттера (в силу отсутствия там объёмных состояний с соответствующей энергией), то ПСИ индуцирует поверхностные состояния с кулоновоподобным спектром (состояния ПСИ). Если же электрон может покинуть уровень в результате того или иного процесса, но вероятность этого события мала (как это часто бывает в действительности), то поверхностные состояния становятся резонансными, а уровни энергии приобретают конечную ширину. Электроны, находящиеся в непрерывном спектре, двигаясь над потенц. ямой, «чувствуют» наличие в ней уровня связанного состояния с малой по сравнению с глубиной ямы энергией связи, если их энергия невелика (сравнима с глубиной залегания уровня). В таком случае электрон за счёт эффектов многократного надбарьерного отражения может эффективно захватываться в область действия потенциала и рассеяние приобретает резонансный характер. Это явление приводит к резонансным осцил-ляциям в зависимости коэф. отражения от внеш. поля. Вероятность выхода в вакуум электрона, двигающегося изнутри твёрдого тела к его поверхности, связана с коэф. отражения соотношениями унитарности, являющимися квантовым аналогом принципа детального равновесия и обеспечивающими закон сохранения числа частиц. Поэтому в полевой зависимости тока T. э. также наблюдаются слабые (но всё же заметные) осцилляции. В пределе слабых полей величина r и зависимость r от энергии существенно обусловлены видом потенциала.

5018-36.jpg

Если потенциал достаточно быстро (быстрее, чем z -2 ) стремится к своему асимптотич. значению, то r стремится к единице, а вероятность выхода электрона в вакуум обращается в нуль по закону e | 1/2 вблизи порога эмиссии (e | — часть энергии электрона относительно уровня вакуума, соответствующая движению электрона по нормали к поверхности, иначе говоря, нормальная компонента полной энергии электрона). В случае медленноизменяющихся с z потенциалов, к к-рым относится и ПСИ, их наличие не привносит дополнит. особенностей в энергетич. зависимость r вблизи уровня вакуума. Поэтому величина (1-r)из ф-лы (*) в большинстве случаев оказывается не слишком малой. Лишь в случаях, когда эмиссия осуществляется в среду с малой характерной длиной экранирования поля, не превышающей величин r оказывается близким к единице.

Термоэлектронная эмиссия из полупроводников. Ф-ла (*) применима и для описания T. э. из полупроводников. Однако влияние темп-ры, электрич. поля, примесей в эмиттере и т. п. на эмиссионный ток и на величины F и А в этом случае существенно иное по сравнению с металлами. Различия обусловлены малой концентрацией электронов проводимости и наличием локализованных поверхностных электронных состояний, влияющих на расположение уровня Ферми 5018-37.jpgна поверхности полупроводника, вплоть до его «закрепления» в нек-рой точке запрещённой зоны (см. Поверхностные состояния, Поверхность). При этом 5018-38.jpgна поверхности полупроводника и F почти (с точностью до величин ~0,1 эВ) не зависят от 5018-39.jpgв объёме (т.е. от типа и концентрации легирующей примеси). Такое закрепление связано с поверхностными состояниями достаточно большой (>=10 12 см -2 ) концентрации, индуцированными в основном собств. дефектами кристалла, возникающими при воздействии на полупроводник разл. внеш. факторов, таких, как адсорбция, механич., термич. обработка и др. В этом случае характер T. э. аналогичен T. э. из металлов.

На достаточно чистых и совершенных поверхностях полупроводников плотность собственных (заполненных и пустых) поверхностных состояний в запрещённой зоне невелика и уровень Ферми на поверхности может перемещаться внутри запрещённой зоны, следуя за его положением в объёме. Поэтому при изменении типа и концентрации примесей в объёме полупроводника изменяются F и ток T. э. Кроме того, электрич. поле в таких полупроводниках не экранируется зарядами поверхностных состояний и проникает в эмиттер на значит. глубину, что приводит к изменению F за счёт приповерхностного изгиба зон и к разогреву электронного газа полем.

Аналогичная ситуация возникает и в том случае, когда внеш. поле превышает величину, достаточную для устранения экранирующего влияния поверхностных состояний. По этим причинам отбор тока эмиссии из полупроводников (в отличие от металлов, где эти эффекты обычно малы) может приводить к значит. нарушению термодинамич. равновесия. Особая ситуация возникает при эмиссии из систем с отрицат. электронным сродством (см. Фотоэлектронная эмиссия), в к-рых неравновесный характер процессов эмиссии (в т. ч. и T. э.) обусловлен изначальными особенностями приповерхностной энергетич. структуры эмиттеров.

5018-40.jpg

Влияние неоднородностей. Поверхность большинства эмиттеров неоднородна, на ней существуют «пятна» с разной работой выхода. Между ними возникает контактная разность потенциалов Df и электрич. поля (поля пятен) величиной ~Df/R (где R — характерный размер неоднородностей). Эти поля создают дополнит. потенц. барьеры для эмитируемых электронов, что приводит к более сильной зависимости тока от анодного напряжения (аномальный эффект Шоттки), а также увеличивает зависимость тока от T. Поскольку размеры неоднородностей обычно не малы, >> 100, а значения разности потенциалов между соседними пятнами ~0,1 — 1 эВ, то типичные величины полей пятен не велики (~10 4 В/см или меньше) и требуют для своего «раскрытия» относительно малых (по сравнению со случаем нормального эффекта Шоттки) внеш. полей, с чем и связана большая величина (аномальность) эффекта в случае неоднородных поверхностей.

Если поверхность сильно неоднородна, так что размеры эмиссионно активных пятен r значительно меньше расстояний между ними, то потенциал f отд. пятна на расстояниях 5018-41.jpgr от него может быть представлен в виде суммы дипольного, квадрупольного и т. д. слагаемых. В частности, зависимость поля пятна от расстояния до поверхности z над центром пятна в этом случае близка к степенной. Последнее обстоятельство (в полной аналогии с нормальным эффектом Шоттки) приводит к степенной или близкой к ней зависимости величины снижения потенц. барьера над центром пятна Df от внеш. поля E (напр., в случае чисто дипольного потенциала f~z -2 и Df~E 2/3 ). В реальных условиях зависимость потенциала от координат более сложна, однако качественно факторы, определяющие вид полевой зависимости тока в условиях аномального эффекта Шоттки, остаются теми же. Кроме того, всегда существует разброс значений параметров неоднородностей, а в нек-рых случаях (напр., для эмиттеров, приготавливаемых из мелкодисперсных порошков) иерархия размеров может быть весьма богатой (от 100 5018-42.jpgдо 10-100 мкм). При этом с ростом поля происходит поочерёдное раскрытие полей пятен, что значительно расширяет полевой диапазон проявления аномального эффекта Шоттки.

Термоэлектронные катоды применяют во многих электровакуумных и газоразрядных приборах, в науч. и технол. установках.

Лит.: Fоменко В. С., Эмиссионные евойства материалов, 4 изд., К., 1981; Добрецов Л. H., Гомоюнова M. В., Эмиссионная электроника, M., 1966; Термоэлектронные катоды, M.- Л., 1966. С. Г. Дмитриев.

Что образуют электроны вылетающие из катода

Электронная эмиссия

Основным электродом каждого электровакуумного прибора является катод, эмитирующий электроны.

Электронной эмиссией называют процесс выхода электронов из твердых или жидких тел в вакуум или газ. Чтобы вызвать электронную эмиссию, надо сообщить электронам добавочную энергию, которую называют работой выхода. Она различна для разных металлов и составляет несколько электрон-вольт. У металлов, имеющих большие по сравнению с другими межатомные расстояния, работа выхода меньше. К ним относятся щелочные и щелочноземельные металлы, например цезий, барий, кальций.

Если на поверхности основного металла расположены атомы веществ, отдающие электроны данному металлу, то наблюдается усиление эмиссии. Такие вещества называются активирующими. Можно также уменьшить работу выхода путем покрытия поверхности металла слоем оксида щелочных и щелочноземельных металлов.

Рассмотрим основные виды электронной эмиссии.

Термоэлектронная эмиссия обусловлена нагревом тела, эмитирующего электроны, и широко используется в электронных приборах. С повышением температуры энергия электронов проводимости в проводнике или полупроводнике растет и может оказаться достаточной для совершения работы выхода. Если вылетевшие электроны не отводятся ускоряющим полем от эмитирующей поверхности, то около нее образуется скопление электронов («электронное облачко»). В нем энергии электронов различны и средняя энергия обычно составляет десятые доли электрон-вольта.

«Электронное облачко» находится в динамическом равновесии. Новые электроны вылетают из нагретого тела, а ранее вылетевшие падают обратно. Это явление напоминает испарение жидкости в замкнутом сосуде. Насыщенный пар над такой жидкостью находится в динамическом равновесии: одни молекулы возвращаются в жидкость, а другие, получившие при нагреве достаточную энергию, вылетают из жидкости.

В приборах с накаленным активированным катодом (например, оксидным) наблюдается значительное усиление термоэлектронной эмиссии под влиянием внешнего ускоряющего поля (эффект Шоттки). Если бы катод не был накален, то эмиссия отсутствовала бы. А при высокой температуре и наличии внешнего ускоряющего поля вылетает дополнительно много электронов, которые при отсутствии поля не могли бы выйти. При кратковременном действии сильного поля выход электронов из накаленных оксидных и других активированных катодов очень велик. Такая эмиссия в виде кратковременных импульсов тока используется в некоторых электронных и ионных приборах.

Электростатическая (или авщоэлектронная) эмиссия представляет собой вырывание электронов сильным электрическим полем. Эту эмиссию иногда называют «холодной», что неудачно, так как все виды эмиссии, кроме термоэлектронной, можно причислить к «холодным».

Выход электронов при нормальной (комнатной) температуре происходит с помощью электрических полей напряженностью не менее 10 5 В/см.

Электростатическая эмиссия значительно усиливается при шероховатой поверхности, что объясняется концентрацией поля у микроскопических выступов этой поверхности. При наличии активирующих, особенно оксидных, покрытий электростатическая эмиссия также усиливается. Помимо уменьшения работы выхода, свойственного оксидному слою, здесь играет роль проникновение внешнего поля в полупроводниковый оксидный слой и шероховатость поверхности оксида.

Вторичная электронная эмиссия обусловлена ударами электронов о поверхность тела. При этом ударяющие электроны называются первичными. Они проникают в поверхностный слой и отдают свою энергию электронам данного вещества. Некоторые из последних, получив значительную энергию, могут выйти из тела. Такие электроны называются вторичными. Вторичная эмиссия обычно возникает при энергии первичных электронов 10—15 эВ и выше. Если энергия первичного электрона достаточно велика, то он может выбить несколько вторичных электронов.

Вторичная эмиссия характеризуется коэффициентом вторичной эмиссии а, который равен отношению числа вторичных электронов п2 к числу первичных n1:

Коэффициент σ зависит от вещества тела, структуры его поверхности, энергии первичных электронов, угла их падения и некоторых других факторов. Для чистых металлов максимальное значение а бывает в пределах 0,5—1,8. При наличии активирующих покрытий а достигает 10 и более. Для интенсивной вторичной эмиссии применяют сплавы магния с серебром, алюминия с медью, бериллия с медью и др. У них коэффициент σ может быть в пределах 2—12 и больше, причем эмиссия более устойчива, нежели у других веществ. Вторичная эмиссия наблюдается также у полупроводников и диэлектриков.

На рис. 15.5 дана зависимость коэффициента σ от энергии первичных электронов W1 При W1 < 10 - 15 эВ вторичной эмиссии нет. Затем она с ростом W1 усиливается, доходя до максимума, после чего ослабевает. Кривая 1 — зависимость для чистого металла, а кривая 2 — для металла с активирующим покрытием. Максимум вторичной эмиссии достигается обычно при энергии W1 в сотни электрон-вольт. Снижение σ при более высоких значениях W1 объясняется тем, что первичные электроны проникают более глубоко и передают энергию электронам, находящимся дальше от поверхности. Последние передают полученную энергию другим электронам и не могут дойти до поверхности. Подобно этому камень, падающий в воду с небольшой скоростью, вызывает сильное разбрызгивание воды; тот же камень при большой скорости быстро входит в воду, не создавая брызг.

Вторичные электроны вылетают в различных направлениях и с различными энергиями. Если они не отводятся ускоряющим полем, то образуют около поверхности тела объемный заряд («электронное облачко»). Энергии большинства вторичных электронов значительно выше, нежели энергии термоэлектронов.

Зависимость коэффициента вторичной эмиссии от энергии первичных электронов

Рис. 15.5. Зависимость коэффициента вторичной эмиссии от энергии первичных электронов

Использование вторичной эмиссии много лет затруднялось тем, что не обеспечивалась ее устойчивость. В дальнейшем были изготовлены устойчиво работающие вторично-электронные катоды из сплавов металлов и стало возможным создание более совершенных электровакуумных приборов со вторичной эмиссией.

Электронная эмиссия под ударами тяжелых частиц имеет сходство со вторичной эмиссией. В большинстве случаев испускание электронов происходит от бомбардировки тела ионами. Для характеристики такой эмиссии служит коэффициент выбивания электронов δ, равный отношению числа выбитых электронов пе к- числу ударивших ионов ni:

Значение δ зависит от вещества бомбардируемого тела, от массы и энергии бомбардирующих ионов, состояния поверхности, наличия или отсутствия на ней активирующих покрытий, угла падения ионов и других факторов. Обычно коэффициент δ значительно меньше единицы, но для полупроводниковых и тонких диэлектрических слоев наблюдаются значения δ > 1. Наименьшая энергия ионов, необходимая для выбивания электронов, составляет десятки электрон-вольт. При наличии активирующих покрытий коэффициент δ возрастает. Энергии большинства выбитых электронов 1 — 3 эВ.

>>>>> 0
!……………….
20
!……………….
40
!……………….
60
!……………….
80
!……………….
100
!……………….
120
!……………….

Термоэлектронный катод должен быть долговечным и обеспечивать устойчивую (стабильную) эмиссию при возможно меньших затратах энергии на накал. Поверхность катода не должна разрушаться от ионной бомбардировки. Даже в высоком вакууме имеется некоторое число положительных ионов. Они ускоренно летят к катоду. Чем выше анодное напряжение, тем с большей силой ионы ударяют в катод.

Экономичность катода характеризуется его эффективностью. Она показывает, какой ток эмиссии можно получить на 1 Вт мощности накала. У современных катодов в режиме непрерывной работы эффективность может быть от единиц до сотен миллиампер на ватт.

Рабочая температура у разных катодов примерно от 700 до 2300 °С. Долговечность катода определяется сроком, по истечении которого выход электронов уменьшается на 10%. Катоды имеют долговечность от сотен до десятков тысяч часов.

При увеличении рабочей температуры повышается эффективность, и поэтому для усиления эмиссии иногда несколько повышают накал, но при этом сокращается долговечность.

Простые катоды, т. е. катоды из чистых металлов, делаются почти исключительно из вольфрама (редко из тантала) и имеют прямой накал. Рабочая температура вольфрамовых катодов 2100 — 2300 °С, что соответствует накалу до светло-желтого или белого цвета. Долговечность этих катодов определяется ослаблением эмиссии из-за уменьшения толщины катода вследствие распыления вольфрама.

Достоинство вольфрамового катода — устойчивость эмиссии. После временного перекала она не уменьшается. Стойкость вольфрамового катода к ионной бомбардировке делает его особенно пригодным для мощных ламп, работающих с высокими анодными напряжениями. Катоды из вольфрама применяются также в специальных электрометри-ческих лампах, в которых важна стабильность эмиссии. Основной недостаток вольфрамового катода — низкая эффективность (единицы миллиампер на ватт). Вследствие высокой температуры интенсивно испускаются тепловые и световые лучи, на что бесполезно расходуется почти вся мощность накала.

У многих типов сложных катодов на поверхность чистого металла наносится активирующий слой, который обеспечивает интенсивную эмиссию при сравнительно невысоких температурах.

Источники электронов, виды электронной эмиссии, причины ионизации

Для того чтобы понять и объяснить принципы действия электронных приборов, необходимо ответить на следующий вопрос: каким образом электроны освобождаются? На него мы ответим в настоящем статье.

В соответствии с современной теорией атом состоит из ядра, имеющего положительный заряд и сосредоточивающего в себе почти всю массу атома, и расположенных вокруг ядра отрицательно заряженных электронов. Атом как целое электрически нейтрален, поэтому заряд ядра должен равняться заряду окружающих его электронов.

Электронные индикаторы

Поскольку все химические вещества состоят из молекул, а молекулы из атомов, то всякое вещество в твердом, жидком или газообразном состоянии представляет собой потенциальный источник электронов. Действительно, все три агрегатных состояния вещества используются в технических приборах в качестве источника электронов.

Особенно важным источником электронов являются металлы, которые для этой цели обычно используются в виде проволок или лент.

Возникает вопрос: если такая нить содержит в себе электроны и если эти электроны сравнительно свободны, т. е. могут более или менее свободно перемещаться внутри металла (что это действительно так, мы убеждаемся на основании того, что даже весьма малая разность потенциалов, приложенная к двум концам такой нити, направляет поток электронов вдоль нее), то почему электроны не вылетают из металла и не образуют в обычных условиях источника электронов? Простой ответ на этот вопрос можно дать на основе элементарной электростатической теории.

Предположим, что электроны покидают металл. Тогда металл должен приобрести положительный заряд. Поскольку заряды противоположных знаков взаимно притягиваются, электроны снова притянутся к металлу, если только какое-нибудь внешнее воздействие не будет препятствовать этому.

Электронная лампа в работе

Существует несколько способов, с помощью которых электронам в металле можно сообщить энергию, достаточную для того, чтобы они покинули металл:

1. Термоэлектронная эмиссия

Термоэлектронная эмиссия — испускание электронов накаленными телами. Термоэлектронная эмиссия исследовалась в твердых телах и особенно в металлах и полупроводниках в связи с использованием их как материала для термоэлектронных катодов электронных приборов и преобразователей тепла в электрическую энергию.

Явление потери отрицательного электричества телами при их нагревании до температуры выше белого каления известно с конца XVIII века. В. В. Петров (1812), Томас Эдисон (1889) и другие установили ряд качественных закономерностей этого явления. К 30-м годам XX века были определены основные аналитические зависимости между числом эмиттированных электронов, температурой тела и работой выхода.

Ток, который течет по нити, когда к ее концам приложено напряжение, нагревает эту нить. Когда температура металла окажется достаточно высокой, электроны будут покидать поверхность металла и выходить в окружающее пространство.

Металл, используемый таким образом, носит название термоэлектронного катода, а освобождение электронов этим способом называется термоэлектронной эмиссией. Процессы, вызывающие термоэлектронную эмиссию, аналогичны процессам испарения молекул с поверхности жидкости.

Как в том, так и в другом случае должна быть затрачена некоторая работа. В случае жидкости эта работа представляет собой скрытую теплоту парообразования, равную энергии, необходимой для того, чтобы перевести один грамм вещества из жидкого в газообразное состояние.

В случае термоэлектронной эмиссии так называемая работа выхода представляет собой минимальную энергию, необходимую для того, чтобы испарить один электрон из металла. Вакуумные ампы, ранее применявшиеся в радиотехнике, обычно имели термоэлектронные катоды.

2. Фотоэмиссия

Действие света на поверхности различных материалов также приводит к освобождению электронов. Энергия света используется для сообщения электронам вещества необходимой добавочной энергии с тем, чтобы они могли покинуть металл.

Материал, применяемый в качестве источника электронов по этому способу, носит название фотоэлектрического катода, а процесс освобождения электронов известен как фотоэлектрическая или фотоэлектронная эмиссия. Этот способ освобождения электронов лежит в основе электрического глаза — фотоэлемента.

3. Вторичная эмиссия

При ударе частиц (электронов или положительных ионов) о металлическую поверхность часть кинетической энергии этих частиц или вся кинетическая энергия их может быть сообщена одному или нескольким электронам металла, в результате чего они приобретут энергию, достаточную для того, чтобы покинуть металл. Этот процесс называется вторичной электронной эмиссией.

4. Автоэлектронная эмиссия

Если вблизи поверхности металла существует весьма сильное электрическое поле, то оно может вырывать из металла электроны. Это явление называется автоэлектронной или холодной эмиссией.

Ртуть является единственным металлом, который широко используется в качестве катода с автоэлектронной эмиссией (в старых ртутных выпрямителях). Ртутные катоды допускают очень большие плотности тока и позволяют конструировать выпрямители на мощности до 3000 кВт.

Электронный ртутный выпрямитель

Из газообразного вещества электроны могут освобождаться также несколькими путями. Процесс, в результате которого атом теряет электрон, называется ионизацией. Атом, потерявший электрон, называется положительным ионом.

Процесс ионизации может иметь место в результате следующих причин:

1. Электронная бомбардировка

Свободный электрон в газонаполненной лампе может приобрести за счет электрического поля энергию, достаточную для ионизации молекулы или атома газа. Этот процесс может носить лавинный характер, так как после выбивания электрона из атома оба электрона в дальнейшем при столкновении с частицами газа могут освобождать новые электроны.

Первичные электроны могут освобождаться из твердого тела любым из рассмотренных выше способов, причем роль твердого тела может играть как оболочка, в которую заключен газ, так и любой из электродов, расположенных внутри лампы. Первичные электроны могут также создаваться в результате фотоэлектрической эмиссии.

Экран электронно-лучевого осциллографа

2. Фотоэлектрическая ионизация

Если газ подвергнуть действию видимого или невидимого излучения, то энергия этого излучения может оказаться достаточной (при поглощении ее атомом) для того, чтобы вырвать некоторые электроны. Этот механизм играет важную роль в определенных видах газового разряда. Кроме того, в газе может иметь место фотоэлектрический эффект под действием излучения возбужденных частиц самого газа.

3. Бомбардировка положительными ионами

Положительный ион, соударяясь с нейтральной газовой молекулой, может освободить электрон, как в случае электронной бомбардировки.

Электронно-лучевая трубка

4. Термическая ионизация

Если температура газа достаточно высока, то некоторые электроны, входящие в состав его молекул, могут приобрести энергию, достаточную для того, чтобы покинуть атомы, которым они принадлежат. Это явление аналогично термоэлектрической эмиссии из металла. Этот тип эмиссии играет роль только в случае мощной дуги при высоком давлении.

Наиболее существенную роль играет ионизация газа в результате электронной бомбардировки. Фотоэлектрическая ионизация имеет значение при некоторых разновидностях газового разряда. Остальные процессы имеют меньшее значение.

Еще относительно недавно везде применялись электровакуумные приборы различных конструкций: в технике связи (в особенности радиосвязи), в радиолокации, в энергетике, в приборостроении и т. д.

Вакуумная лампа

Применение электровакуумных приборов в области энергетики состояло в преобразовании переменного тока в постоянный (выпрямление), в преобразовании постоянного тока в переменный (инвертирование), в изменении частоты, в регулировании скорости электродвигателей, в автоматическом контроле напряжения генераторов переменного и постоянного тока, во включении и выключении значительных мощностей в электросварке, в управлении освещением.

Использование взаимодействия излучения с электронами привело к созданию фотоэлементов и газоразрядных источников света: неоновых, ртутных и люминесцентных ламп. Электронные приборы управления имели исключительное значение для цепей театрального и производственного освещения.

Современные светодиодные лампы

В настоящее время все эти процессы используют полупроводниковые электронные приборы, а для целей освещения используются светодиодные технологии.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *