Электричество Основные формулы
q1, q2 — величины точечных зарядов,
r — расстояние между зарядами.
1.2 Напряженность поля уединенного точечного заряда
q — величина уединенного точечного заряда,
r — расстояние от заряда.
1.3 Потенциал точки в поле точечного заряда
q — величина уединенного точечного заряда,
r — расстояние от заряда.
1.4 Потенциальная энергия заряда в электростатическом поле
φ — потенциал,
q1 — величина заряда.
1.5 Потенциальная энергия заряда q1 в поле точечного заряда
q — величина уединенного точечного заряда, который создает поле,
r — расстояние между зарядами.
1.6 Теорема Гаусса
N — поток вектора напряженности электрического поля через замкнутую поверхность,
q — полный заряд, находящийся внутри замкнутой поверхности.
1.7 Напряженность электрического поля вблизи от поверхности проводника
σ — поверхностная плотность заряда.
1.8 Емкость плоского кондесатора
q — заряд конденсатора,
U — модуль разности потенциалов между обкладками.
1.9 Энергия плоского кондесатора
q — заряд конденсатора,
U — модуль разности потенциалов между обкладками.
2. Постоянный электрический ток
2.1 Закон Ома для участка однородной цепи
U — напряжение на концах участка,
R — сопротивление участка цепи.
2.2 Закон Ома для замкнутой цепи с источником тока
— ЭДС (электродвижущая сила),
r — внутреннее сопротивление источника ЭДС.
2.3 Работа постоянного тока
U — напряжение на концах участка цепи,
t — время, за которое совершается работа.
2.4 Закон Джоуля-Ленца
Q — теплота,
R — сопротивление проводника,
t — время, за которое выделяется теплота.
2.5 Полная мощность, развиваемая источником тока
— ЭДС источника тока,
R — сопротивление цепи,
r — внутреннее сопротивление источника тока.
2.6 Полезная мощность
— ЭДС источника тока,
R — сопротивление цепи,
r — внутреннее сопротивление источника тока.
2.7 Коэффициент полезного действия источника тока
R — сопротивление цепи,
r — внутреннее сопротивление источника тока.
2.8 Первое правило Кирхгофа
n — число проводников, сходящихся в узле;
Ik — сила тока в k-м проводнике.
2.9 Второе правило Кирхгофа
n — число неразветвленных участков в контуре;
m — число ЭДС в контуре.
Законы постоянного тока
«Все, кина не будет. Электричество кончилось». Наверное, никого не оставит равнодушным популярная фраза из широко известного фильма «Джентльмены удачи». Ведь действительно: немного раздражает, когда сидишь за просмотром любимого сериальчика, вдруг — бамс! Вырубили свет, и зарядки ноута, как назло, не хватило. И не добудешь электричество в домашних условиях, а жаль… Но вот понять, как оно работает — это мы сможем сделать в статье.
Электрический ток
В наше время трудно себе представить жизнь без электричества. Телевизор не посмотреть, телефон не зарядить, чай не попить… Ни один электроприбор в доме не будет работать без электричества. А объявление об отключении электроэнергии, вызывает тихий ужас.
Электричество — это форма энергии, которая существует в виде статических или подвижных электрических зарядов.
Поток. И то и другое представляет собой направленное движение частиц. Из чего состоит вода? Из молекул. Когда эти молекулы движутся в одном направлении, то они образуют поток воды, который течет, например, по трубам.
Электрический ток — это упорядоченное движение заряженных частиц.
Чтобы электрический ток существовал, необходимо выполнение следующих условий:
- наличие свободных заряженных частиц;
- наличие электрического поля;
- наличие замкнутой электрической цепи.
Основными количественными характеристиками электрического тока являются сила тока и напряжение.
Напряжение
Чтобы внутри цепи существовал электрический ток, цепь должна быть замкнута и между концами участка цепи должно существовать напряжение.
Напряжение — скалярная (не имеющая направления) физическая величина, значение которой равно работе тока на участке цепи, совершаемой при переносе единичного электрического заряда из одной точки в другую.
Единица измерения U — В (Вольт) = \(\frac\)
Электрический ток — результат «труда» множества частиц. Они любят работать – не ленятся перемещаться из одного конца цепи в другой. И чем больше они будут работать, тем большее напряжение получится. Так запоминаем связь напряжения (U) с работой (A).
Услышав слова из известной песни Димы Билана «Это ты, это я, между нами молния, С электрическим разрядом 220 Вольт…» любой физик (и электрик) приобретает новую пару седых волосинок. Такое напряжение очень опасно для человека. Однако, 220 Вольт — это то самое напряжение в наших розетках!
Прибор для измерения напряжения — вольтметр. Он включается в цепь параллельно. Пример подключения представлен на рисунке:
Сила тока
Это еще одна немаловажная характеристика электрического тока.
Сила тока — это физическая величина, показывающая, какой заряд переносится через рассматриваемую площадь поперечного сечения за единицу времени .
Единица измерения I — А (ампер) = \(\frac\).
Представим, что внутри проводника «бежит» в одном направлении огромное количество заряженных частиц. Так вот, чем больше общий заряд частиц, пробегающих через поперечное сечение проводника за единицу времени, тем больше будет значение силы тока. Это поможет вам запомнить зависимость силы тока (I) от электрического заряда (q).
Если сила тока в цепи не изменяется, то величина заряда, прошедшего через поперечное сечение проводника, прямо пропорциональна времени его протекания. В этой зависимости сила тока выступит в роли коэффициента пропорциональности.
Прибор для измерения силы тока — амперметр. Он включается в цепь последовательно. Пример подключения представлен на рисунке:
Направление тока совпадает с направлением движения положительно заряженных частиц.
Давайте разберемся, как можно определить направление тока в цепи на примере.
Задача. На рисунке изображена электрическая цепь с источником тока и сопротивлением R. Определите направление тока в данной цепи (по часовой стрелке/против часовой стрелки).
Решение:
Обратите внимание, «большая» пластина реостата расположена справа (именно она и направляет ток), а «маленькая» слева. Положительно заряженные частицы двигаются от катода к аноду (от положительно заряженной пластинки к отрицательно заряженной), а направление тока всегда совпадает с направлением положительно заряженных частиц. Значит, ток в цепи направлен по часовой стрелке.
Ответ: по часовой стрелке
Электрическое сопротивление
Оно является электрической характеристикой проводника.
Сопротивление — физическая величина, характеризующая электрические свойства участка цепи.
Единица измерения R — Ом.
Удельное сопротивление проводника (p) можно посмотреть в специальной таблице в справочнике или в интернете. Для каждого материала будет свое значение. Мы приведем для примера лишь фрагмент такой таблицы.
Таблица удельных сопротивлений (p) некоторых проводников
Металл | Удельное сопротивление, Ом * \(мм^2\)/ м |
Серебро | 0,0016 |
Медь | 0,017 |
Золото | 0,023 |
Алюминий | 0,028 |
Вольфрам | 0,055 |
Железо | 0,1 |
Сопротивление — это внешнее свойство, зависящее от количества присутствующего материала, от геометрических характеристик проводника и от самого материала, из которого сделан проводник.
Удельное сопротивление — это внутреннее свойство проводника, которое не зависит от его размера, а зависит от химического состава вещества и температуры.
Получается, что прежде всего на то, каким будет сопротивление, влияют размеры проводника, его форма, материал, из которого он сделан.
Удельное сопротивление проводника зависит также от температуры. Когда температура твердых тел увеличивается, то удельное сопротивление возрастает. А в растворах и расплавах — наоборот, уменьшается. В экзаменационных задачах случаи с изменением удельного сопротивления не рассматриваются, а вот в олимпиадных задачах такое встретить можно.
Давайте поразмышляем: что чему сопротивляется?
Причина электрического сопротивления кроется во взаимодействии зарядов разного знака при протекании тока по проводнику. Это взаимодействие можно сравнить с силой трения, стремящейся остановить движение заряженных частиц.
Чем сильнее взаимодействие свободных электронов с положительными ионами в узлах кристаллической решетки проводника, тем больше сопротивление проводника.
Проводник с определенным постоянным сопротивлением называется резистор.
Вернемся к сравнению электрического тока с водой: как молекулы воды из крана движутся сверху вниз, так и электрический ток имеет определенное направление — от катода к аноду. Электрический заряд условно в нашем примере аналогичен массе воды, а напряжение — напору воды из крана.
Зависимость силы тока от сопротивления участка цепи и напряжения на его концах
Установить зависимость силы тока в проводнике от напряжения на его концах можно экспериментально. Меняя значение поданного на концы проводника тока, убедимся в том, что сила тока растет вместе с напряжением. Интересно, что такая зависимость для различных сопротивлений сохраняет свой вид. Это прямая пропорциональность.
Причем угол наклона графика для большего сопротивления меньше.
Аналогично, проводя измерение силы тока при изменении сопротивления проводника, поддержим постоянное напряжение на его концах. Опытным путем установим, что такая зависимость является обратной пропорциональной.
Объединив эти зависимости в одну, получим один из основных законов, описывающих явление постоянного электрического тока.
Закон Ома
Сила тока, напряжение и сопротивление связаны между собой соотношением, которое называется законом Ома:
Для упрощенного понимания закона Ома можно использовать данный треугольник. Чтобы вспомнить формулу для нахождения той или иной величины, нужно ее закрыть рукой. Если оставшиеся открытыми величины стоят бок о бок, то они перемножаются друг с другом (U=IR). А если одна величина стоит выше другой, то в таком случае мы делим их друг на друга (I=U/R или R=U/I)
Данный закон справедлив для участка цепи, на который не действуют сторонние силы.
Разберем задачу из контрольно-измерительных материалов ЕГЭ (номер 12).
Ниже на рисунке приведена схема электрической цепи, в которой провода можно считать идеальными. Определите сопротивление резистора, если показания амперметра 0,2 А, а вольтметра — 8 В.
Решение:
Вольтметр подключен параллельно резистору. Следовательно, он показывает напряжение на резисторе U.
Амперметр подключен последовательно. Следовательно, он показывает силу тока I на всей цепи.
Чтобы найти сопротивление на резисторе, воспользуемся законом Ома:
I=\(\frac\), где R — сопротивление резистора.
Выразим R и подставим значения:
R=\(\frac\)
R=\(\frac\)=40 (Ом)
Ответ: 40
В общем случае, когда заряд меняется со временем, рассматривают силу тока как производную заряда от времени. По сути сила тока показывает скорость изменения заряда со временем.
Учитывая понятие производной функции, получим геометрический смысл зависимости силы тока от времени. Заряд, прошедший через поперечное сечение проводника за данное время, можно определить как площадь фигуры, ограниченной графиком зависимости скорости от времени.
Электрический ток так и остался бы весьма интересным физическим явлением, занимающим умы физиков, если бы не нашлось ему столь широкого применения, поскольку ток может выполнить работу.
Работа и мощность электрического тока
Вернемся к понятию работы. Мы говорили, что при перемещении заряда по проводнику электрическое поле совершает работу (А):
Если мы выразим заряд из формулы силы тока q = It, то получим формулу для расчета работы электрического поля (А) при протекании постоянного тока (или просто работы тока):
Единица измерения А — Дж (Джоуль).
В быту ток совершает работу длительное время, поэтому при определении затраченной электрической энергии используют единицу измерения кВт*ч. Киловатт в час — это энергия, которая потребляется устройством мощностью 1 кВт (1000 Вт) в течение 1 часа. Учитывая, что 1 ч = 3600 с, получим:
1 кВт*ч = 1000 Вт * 3600 с = 3600000 Дж = 3600 кДж
Если же работу тока рассчитать за единицу времени, то мы получим мощность постоянного электрического тока.
Мощность — величина, обозначающая интенсивность передачи электрической энергии.
Единица измерения P — Вт (Ватт).
Средняя мощность тока равна:
Теперь мы знаем все про мощность и работу тока, а значит, нужно отработать это на практике. Тем более что такие задачи встречаются в ЕГЭ (номер 12).
Задача.
Какую работу совершит электрический ток в электродвигателе вентилятора за 20 мин., если сила тока в цепи 0,2 А, а напряжение 12 В?
Решение.
Вспомним формулу для работы тока A=U*I*t , где U=12 В — напряжение в электродвигателе, I=0,2 A — сила тока, t=20 мин.=1200 с. — время.
Все данные нам уже известны, поэтому можем подставить их в формулу для работы тока и получить ответ.
Ответ: 2880 Дж
Мощность электроприбора всегда указывается в документации, прилагающейся к нему. Кроме того, нередко ее пишут на самом приборе. Можете заглянуть в любую инструкцию к утюгу или стиральной машине. Там вы увидите, что утюг имеет мощность 1000 Вт, а обычная энергосберегающая лампочка, всего 40 Вт (на то она и сберегающая). Чем больше мощность прибора, тем больше энергии он будет потреблять. Примеры мощностей различных приборов представлены на рисунке.
Закон Джоуля — Ленца
Теперь свяжем работу тока и теплоту, которая выделяется на проводнике за некоторое время t.
Почему так происходит?
Электрический ток оказывает тепловое действие на проводник. Количество теплоты, которое при этом выделяется, будет рассчитываться по закону Джоуля — Ленца :
Количество теплоты, выделяемое за время в проводнике с током, пропорционально произведению квадрата силы тока на этом участке и сопротивления проводника:
Единица измерения Q — Дж (Джоуль).
В электронагревательных приборах используются проводники с высоким сопротивлением, что обеспечивает выделение тепла на определенном участке.
Так, проволоку из нихрома (сплав никеля с хромом) применяют в электронагревательных элементах, работающих при температуре до 1000 ℃ (резисторах, например). Нихром относится к классу сплавов с высоким электрическим сопротивлением, что определяет его применение в качестве электрических нагревателей. Этот сплав используется также в печах обжига и сушки и различных аппаратах теплового воздействия, например, в фенах, паяльниках или обогревателях.
Кто первый ввел понятие «электрический ток» в науку? Ответ: Андре-Мари Ампер.
Еще немного про электричество…
- Постоянный электрический ток используется в работе двигателей электротранспорта, схемах автомобилей, электронике и др.
- Электричество есть и в нашем организме. Мышечные клетки сердца при сокращении производят электроэнергию, эти импульсы можно измерить с помощью электрокардиограммы (ЭКГ).
- Бенджамин Франклин (да-да, президент Америки) провел множество опытов в 18 веке и создал громоотвод. Также он является человеком, который вывел закон сохранения электрического заряда.
- В древности люди считали, что, если молния ударила в курган, значит, там зарыто сокровище.
Термины
Источник тока — устройство, разделяющее положительные и отрицательные заряды.
Сторонние силы — силы неэлектрического происхождения, вызывающие разделение зарядов в источнике тока.
Фактчек
- Сила тока — это физическая величина, показывающая, какой заряд переносится через рассматриваемую площадь поперечного сечения за единицу времени: \(I = \frac\).
- Напряжение — скалярная физическая величина, равная отношению полной работы кулоновских и сторонних сил А при перемещении положительного заряда на участке цепи к значению этого заряда: \(U = \frac\).
- Сопротивление — физическая величина, характеризующая электрические свойства участка цепи: \(R = \frac\).
- Мощность — величина, обозначающая интенсивность передачи электрической энергии: \(P = \frac\).
- Закон Ома: сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении и обратно пропорциональна сопротивлению участка при постоянном напряжении: \(I = \frac\).
- Закон Джоуля— Ленца: количество теплоты Q, выделяемое за время t в проводнике с током, пропорционально произведению квадрата силы тока I на этом участке и сопротивления R проводника: Q = I 2 Rt.
- Работа электрического поля при протекании постоянного тока (или просто работа тока): А = UIt.
Проверь себя
Задание 1.
Упорядоченное движение заряженных частиц — это:
- электрическое поле
- электрический ток
- электрическая мощность
- работа тока
Задание 2.
Удельное сопротивление проводника:
- зависит от температуры
- не зависит от температуры
- зависит от силы протекающего через проводник тока
- не зависит от напряжения
Задание 3.
Формула для расчета силы тока:
Задание 4.
Что такое мощность электрического тока?
- работа за единицу времени
- отношение заряда к единице времени
- произведение силы тока на сопротивление
- тепло, выделяемое на резисторе
Задание 5.
В чем причина электрического сопротивления?
- во взаимодействии зарядов одинакового знака
- в отсутствии взаимодействия между зарядами
- во взаимодействии зарядов разного знака
- в передаче тепла
Ответы: 1.— 2; 2. — 1; 3.— 4; 4.— 1; 5. — 3.
Что означает буква U в физике?
U — внутренняя энергия тела. u — один из рекомендованных символов для обозначения скорости. U — рекомендованный символ для обозначения электрического напряжения.; * u — рекомендованный символ для обозначения вектора смещения иона (физика твёрдых тел).
Остальные ответы
напряжение
Как и в случае с другими латинскими и греческими буквами U (большое) и u (маленькое) могут обозначаться самые разные физические величины. Во-первых, U (большое) может обозначать электрическое напряжение, точнее постоянное электрическое напряжение, а через u (маленькое) — переменное электрическое напряжение.
Также через U (большое) обозначается внутренняя энергия системы, а через u (маленькое) скорость движения (например, когда буква v уже занята).
Есть еще одно обозначение через букву U, которое имеет отношение к физике, это обозначение химического элемента урана.
Твоя Зина могла бы и потенциалоную энергию вспомнить для приличия, из популярных U-шек то.
Похожие вопросы
Электродвижущая сила
Весь современный мир держится на электричестве. Наряду с глобальной интернет-сетью, наш мир «опутан» сетью электрических проводов. Что такого происходит в этих тоненьких проводах, что от них зависит жизнь целого города? Давайте поближе познакомимся с электрическим током и узнаем, откуда он появляется.
Мы с вами уже познакомились с электрическими схемами в теме «Законы постоянного тока», где выяснили, какие приборы существуют и как используются в схемах. В этой статье мы поговорим о том, как в элементарных электрических цепях появляется ток. Начало положено, сопротивление бесполезно.
Источник тока
Как мы уже выяснили, электрические схемы не могут работать просто так. Представим, что вы хотите поехать на машине, в которой нет бензина. Конечно, машина не заведется, так как ее нужно заправить. Электрические схемы работают по такому же принципу. Если их не подпитывать током, то они не будут работать.
Электрический ток — это направленное, упорядоченное движение электрических зарядов. Поэтому, чтобы поддерживать в цепи ток длительное время, в нем должен быть участок, на котором будет происходить перенос зарядов против сил электростатического поля (поля, создаваемого неподвижными зарядами). То есть, то место, где электроны будут принудительно приходить в движение.
Источник тока — элемент электрической цепи, в котором на заряды действует сторонняя сила, задающая направление движения зарядов (тока).
Перемещение зарядов на этом участке возможно лишь с помощью сил неэлектростатического происхождения, называемых сторонними силами. Эти силы приводят заряды в движение. Благодаря этому поддерживается ток в цепи. Действие сторонних сил характеризуется величиной, называемой электродвижущей силой источника тока (ЭДС), о которой поговорим чуть позднее.
Примером источника тока может служить обычная батарейка. Вы наверняка замечали, что на пальчиковых батарейках с одной стороны пишется «плюс», а с другой — «минус». Это означает, что электрический ток пойдет от положительной части батарейки к отрицательной. А почему ток выходит из одной части, но заходит в другую?
Для объяснения этого явления рассмотрим картинку ниже. Главным критерием рабочей электрической цепи является ее замкнутость, то есть вся цепь неразрывно связана. Подключим нашу батарейку (источник тока) к электрической цепи, которую также называют внешней электрической цепью.
Как мы видим на этом рисунке, на заряды внутри источника тока действует сторонняя сила (\(F_\)), от плюса к плюсу) и сила электростатического поля (\(F\)), которая направлена от плюса к минусу. Без действия сторонних сил внутри источника положительный заряд будет двигаться от «+» к «-» (по направлению силы \(F\)).
Мы действуем сторонними силами так, чтобы он стал двигаться к «+» (по направлению \(F_\)), то есть против сил электростатического поля. Тогда заряды вылетают из источника тока и далее по внешней цепи, уже под действием обычного электростатического поля, движутся по стандартным законам от «+» к «-». Это и есть наш долгожданный электрический ток – движущиеся заряды. Если бы мы не действовали сторонними силами, все заряды бы просто сидели на месте («+» окружили бы «-», и наоборот). То есть, сама сторонняя сила задает направление движения заряда.
После того как заряд выходит из источника тока, на него действует только одна сила F. Поэтому он обходит всю цепь и возвращается в этот же источник тока. Там на него вновь действует сторонняя сила, ну а дальше вы уже знаете.
Если бы в источнике тока не было сторонних сил, то все положительные заряды застряли бы у минуса.
Основные параметры источника тока
Как и любой другой элемент электрической цепи, источник тока обладает своими характеристиками, которые могут меняться в зависимости от условий использования. Главными характеристиками являются ЭДС источника тока (электродвижущая сила) и его внутреннее сопротивление.
ЭДС источника тока (ε) — это физический параметр, который характеризует работу сторонних сил (\(А_\)), затраченную на перемещение зарядов (q) внутри источника.
Внутреннее сопротивление определяет количество потерь энергии при прохождении тока через источник тока.
Стоит понимать, что внутреннее сопротивление появляется из-за неидеальности реальных предметов. Только у идеальных источников тока отсутствует внутреннее сопротивление.
Однако при расчете характеристик электрических схем никакой сложности не возникает, так как мы просто представляем, что в цепи появляется дополнительный резистор (на схемах обозначается прямоугольником и буквой R), сопротивление которого будет равняться внутреннему сопротивлению источника тока.
Раз уж мы затронули расчеты электрических схем, то пора вплотную к ним приблизиться.
Закон Ома для участка цепи
Георг Ом рос в небогатой семье. Также он был довольно азартным человеком, любил играть в бильярд в компании друзей. В университетские годы Ом был лучшим игроком в бильярд среди студенческой молодежи, показывал прекрасные результаты в конькобежном спорте.
Дальше мы с вами поговорим о напряжении на элементах электрической цепи, и, в частности, на источнике тока. Поэтому вспомним, что такое напряжение из темы «Законы постоянного тока». Напряжение – физическая величина, которая показывает, какую работу сторонние силы должны приложить, чтобы перенести заряд от одной точки до другой.
Так как у источника тока имеется внутреннее сопротивление, значит, внутри него также будет и напряжение. Чтобы найти его, воспользуемся законом Ома — умножим внутреннее сопротивление источника тока r на сам ток I и получим:
Также мы можем найти напряжение, которое будет выделяться на внешней цепи. Для этого снова умножим ток I на общее сопротивление цепи R:
Оказывается, что не вся энергия источника тока уходит в цепь. Как раз таки та часть энергии, которая уходит на преодоление внутреннего сопротивления, и будет характеризовать потери. Тогда мы можем записать еще одну формулу для нахождения ЭДС источника тока:
Теперь давайте подставим вместо напряжений полученные формулы через токи и сопротивления и выразим силу тока. Так мы получим закон Ома для полной цепи:
Сила тока в цепи с заданным источником тока (при неизменной ЭДС и с постоянным внутренним сопротивлением) зависит только от сопротивления внешней цепи R.
Самое большое электрическое сопротивление на теле человека — поверхность верхнего рогового слоя кожи человека. Оно может достигать 40000–100000 Ом. Но это не значит, что можно хвататься за оголенные провода голыми руками! Этого сопротивления далеко не достаточно, чтобы защитить человека от опасного электрического тока.
Задачи на данную тему встречаются в №12 ЕГЭ. Давайте рассмотрим один пример.
Задача. Найдите внутреннее сопротивление источника ЭДС, если сопротивление в цепи R = 4 Ом, а ЭДС ε=10 В. Сила тока в цепи 2 А.
Решение.Воспользуемся законом Ома для полной цепи и выразим из него внутреннее сопротивление источника ЭДС:
Ответ: 1 Ом
Короткозамкнутая цепь
Рассмотрим частный случай электрической цепи, в котором источник тока будет подключен сам на себя. Иначе говоря, он будет короткозамкнутым.
В этом случае отсутствует сопротивление внешней цепи и закон Ома для цепи будет выглядеть так:
Короткое замыкание — это такой случай соединения проводов, при котором практически весь ток проходит по пустому проводу и возвращается в источник тока.
Короткое замыкание приводит к сильному нагреву, расплавлению металлов, а иногда и к пожарам.
Если сравнить поток электронов с потоком машин, то ток короткого замыкания – это авария на автодороге. Один поток машин решил влезть в другой. В результате на дороге образовалась авария. Но машины продолжают налетать одна на другую (как в метель в Норильске).
Теперь, когда мы уже рассмотрели основные характеристики источника тока, можем перейти к мощности и КПД источника тока.
Мощность и КПД источника тока
Мы уже не раз говорили о том, что при протекании тока выделяется энергия. Источники тока не исключение. При подключении их к цепи на них выделяется энергия. При этом энергия выделяется и в самой цепи.
Чтобы найти мощность передачи энергии (P), выделяемой источником тока, необходимо умножить силу тока на ЭДС этого источника тока. Тогда получим:
При этом часть этой мощности уходит на элементы внешней цепи, а другая часть – на преодоление внутреннего сопротивления источника тока:
Тогда мощность, выделяемая на внешней цепи:
А мощность, которая теряется на внутреннее сопротивление источника тока:
Теперь давайте рассмотрим коэффициент полезного действия (КПД, ) источника тока. Как мы уже говорили ранее, часть ЭДС источника тока уходит на внутреннее сопротивление, а часть – на внешнюю цепь. При этом вспомним, что КПД – это отношение полезной мощности к затраченной.
Запишем формулы для мощности:
Также задачи на тему ЭДС встречаются и в №16 ЕГЭ. Сложность данных задач заключается в установлении правильной зависимости величин друг от друга.
Задача.Определите, как изменятся сила тока (А) в цепи и сопротивление резистора (Б), если ЭДС источника тока заменить на такую же ЭДС, но с большим внутренним сопротивлением.
1) увеличится
2) уменьшится
3) не изменится
Решение.
Б) Внешнее сопротивление никак не зависит от источника тока. Поэтому оно не изменится — выбираем ответ 3.
А) Запишем закон Ома для полной цепи:
\(I=\frac\)
При увеличении внутреннего сопротивления знаменатель увеличится. Следовательно, сила тока уменьшится, так что вариант 2 тоже нам подходит.
Ответ: 23
Мы с вами выяснили, что источники тока – элементы электрической цепи, без которых самой цепи не существовало бы. Хотя, конечно, она бы существовала, но была бы бесполезной. Однако и они «не без греха», так как существует опасное внутреннее сопротивление, которое является головной болью для многих инженеров. А все потому, что оно снижает КПД источников тока. Дальше вы можете ознакомиться с полноценными электрическими схемами и посмотреть, как ток ведет себя за пределами источника тока.
Термины
Напряжение – произведение сопротивления элемента и протекающего через него тока.
Резистор (или резистивный элемент) – элемент электрической цепи, который может только потреблять энергию и не может ее создавать.
Сторонние силы — это все внешние силы, воздействующие на заряд.
Электростатическое поле — невидимое поле, создаваемое постоянными электрическими зарядами.
Фактчек
- ЭДС источника тока (ε) — это физический параметр, который характеризует работу, затраченную на перемещение зарядов внутри источника сторонними силами: \(ε =\frac>\).
- Внутреннее сопротивление (r) — определяет количество потерь энергии при прохождении тока через источник тока.
- Закон Ома для полной цепи: Сила тока в замкнутой цепи равна отношению ЭДС цепи к ее полному сопротивлению: \(I =\frac\).
- Предельное значение силы тока для данного источника тока называется током короткого замыкания: \(I_ =\frac\).
- Полная мощность цепи — это есть мощность источника тока: \(P_ист=εI\).
Проверь себя
Задание 1.
Как рассчитывается ЭДС источника тока?
Задание 2.
Короткое замыкание — это:
- Соединение концов участка цепи проводником, сопротивление которого очень мало по сравнению с сопротивлением участка цепи.
- Соединение концов участка цепи проводником, сопротивление которого очень велико по сравнению с сопротивлением участка цепи.
- Соединение концов участка цепи проводником, сопротивление которого не зависит от сопротивления участка цепи.
- Отсутствие электрического тока в цепи.
Задание 3.
Чему равно ЭДС источника тока?
- \(ε = U_R- U_r\)
- \(ε = U_R+ U_r\)
- \(ε = U_R U_r\)
- \(ε = U_R\)
Задание 4.
От чего зависит сила тока в цепи с заданным источником тока?
- от внутреннего сопротивления цепи
- от внутреннего сопротивления источника тока
- от внешнего сопротивления цепи
- не зависит ни от каких величин
Задание 5.
Где самое большое сопротивление в человеке?
- в сердце
- в пищеварительной системе
- на коже
- в голове
Ответы: 1. — 1; 2. — 1; 3. — 2; 4. — 3; 5. — 3.