Совместная работа нескольких источников питания на одну нагрузку
У многих начинающих заниматься электроникой часто возникают проблемы нехватки мощности (тока) источников питания или недостаточной величины напряжения. Для того чтобы обойти эту проблему часто соединяют несколько источников параллельно или последовательно. Что при этом происходит и как это сделать правильно рассмотрим ниже.
Общие принципы
Параллельное и последовательное соединение элементов давно известно и применяется в практической схемотехнике, для получения заданных номиналов элементов. На примере соединения резисторов это выглядит так:
Но резистор или конденсатор имеет только один основной параметр — номинал и вариант соединения просто изменяет их результирующую (суммарную) величину.
На практике часто используется параллельное (иногда электрохимических) и последовательное соединение источников питания.
Последовательное соединение используется для увеличения результирующего напряжения, а параллельное — для увеличения суммарного потребляемого тока.
Последовательное соединение электрохимических источников питания
При последовательном соединении параметры ( E и Ri) просто суммируются,
Самое главное, Вы должны знать:
Как я уже говорил, каждый источник питания (любого типа) имеет свои характеристики которые можно свести к статическим и полностью определяющим его характеристики — Ri, U( E ); Эти характеристики химических источников тока могут меняться от экземпляра к экземпляру или со временем случайным образом (они зависят от множества параметров на каждом этапе технологического процесса их производства);
Не бывает двух абсолютно одинаковых источников питания, как вообще любых электронных компонентов. (хотя для того чтобы как-то ограничить разброс применяется группировка компонентов, по ряду номиналов и ряду точности).
Поэтому при последовательном соединении продолжительность работы химических источников тока определяется худшим в цепочке. Когда он потеряет емкость, его внутреннее сопротивление возрастет и ограничит потребляемый нагрузкой ток.
При параллельном соединении все много сложнее.
Отсюда вытекают большинство возникающих проблем.
Параллельное соединении электрохимических источников питания
При параллельном соединении электрохимических элементов (источников) питания, если не принимать мер возникают проблемы.
Дело в том что эти элементы обладают сразу несколькими параметрами определяющими их характеристики.
Напряжение (ЭДС) — E , и внутреннее сопротивление — Ri .
Сразу стоит уточнить, что эти параметры сугубо индивидуальны и поэтому достаточно редко даже в одной партии они повторяются.
Посмотрим рисунок 3, при параллельном соединении двух разных источников питания (электрохимический элемент), имеющих равное внутренне сопротивление (Например 0,25 ом, суммарное 0,5 ) и разное выходное напряжение ( U 1 =2,2 В, U 2 =2,1 В, Δ U= 0,1 В ) между ними появляется ток перетекания I пер равный 0,2 А.
Этот ток будет существовать даже при выключенной нагрузке, пока напряжение на источниках не сравняется. Когда лучший электрохимический элемент разряжается на худший — это потеря их суммарной емкости.
Поэтому параллельное соединение отдельных элементов электрохимических источников тока не рекомендуется. Возможно параллельное соединение (резервирование) последовательных батарей элементов с применением специальных устройств защиты (см. рис. 6) от токов перетекания или коммутаторов.
Фотоэлектрические элементы — элементы солнечных батарей
Немного иная ситуация получается при параллельном соединении элементов солнечных батарей, которая определяется свойствами самого солнечного элемента. Это генерация тока под действиями квантов света попадающих на плоский p-n переход достаточно большой площади. Солнечный элемент имеет вольт-амперную характеристику подобную полупроводниковому диоду с соответствующими отклонениями присущими p-n переходам большой площади.
Поэтому для солнечного элемента токи перетекания отсутствуют. Но наличие в параллельно соединенных элементах Δ U, приводит к тому что при малом отборе тока элемент с меньшим напряжением просто отключается. А при высоком отборе мощности ток нагрузки каждого элемента разный и определяется током нагрузки на каждом элементе при данном напряжении нагрузки U. см. рис. 5.
Посмотрим на примере вольт амперной характеристики элемента солнечной батареи, что происходит при их параллельном соединении, как показано на Рис. 1б. Примерный график вольт амперной характеристики приводится ниже.
На рис. 5 видим, что при равном напряжении U н элемент SC3 генерирует ток I 1 меньший тока генерируемого элементом SC4 равного I 2 . В результате суммарный ток нагрузки равен:
То есть при данном U н отдаваемая соединенными параллельно элементами мощность равна:
Этот требует, чтобы не перегружать лучшие элементы, группировать при параллельном соединении элементы с близкими токами (характеристиками в рабочих точках).
А еще лучше формировать последовательно соединенные группы элементов на номинальное напряжение с последующим их соединением в параллельные группы заданной мощности.
Совместная работа батарей химических элементов
Часто рекомендуют при параллельном подключении батареи электрохимических источников использовать включенные последовательно с каждой батареей диоды, которые предотвратят токи перетекания. Но условия равенства их выходного напряжения (максимальной близости) сохраняется. Это особенно важно именно для электрохимических источников питания, которые имеют ограничения по разрядному току. В случае его превышения сокращается ресурс. Схема включения показана на рис. 6.
Здесь необходимо учитывать, что выходное напряжение такой батареи меньше на 0,3 -:- 0,8В (падение напряжения на p-n переходе диода при его прямом смещении) чем у батареи без защитных диодов. Как видно из величины потери напряжения использовать эту схему для параллельного соединения отдельных элементов не экономично. Велики потери мощности.
Диоды так же позволяют использовать горячую замену батареи, поскольку при подключении свеже заряженной батареи диод разряженной просто будет заперт.
Блоки питания
Свои особенности при параллельном соединении имеют и блоки питания работающие на общую нагрузку.
Все типы блоков (сетевые 50 Гц и импульсные — в том числе повышающие и понижающие преобразователи постоянного тока в постоянный) содержат в своем составе преобразователь напряжения (трансформатор или электронный импульсный преобразователь с трансформатором) и выпрямляющее устройство на выходе — диодные выпрямители. На рис. 7 показано такое соединение.
В данной схеме, как при параллельном соединении солнечных элементов, не существует статических токов перетекания, они пресекаются диодными выпрямителями которые, как известно, имеют очень большое обратное сопротивление.
Обязательное условие при таком включении блоков питания это: равенство напряжений и наличие соединения общих точек обоих источников питания показанных на рис. 7 пунктирной линией красного цвета. Это условие определяется, как понятно из сказанного выше, а равномерной нагрузкой каждого источника питания.
Но она, как любая система, имеет свои особенности.
Это импульсные токи перетекания при зарядке фильтрующего конденсатора с меньшим напряжением (например U2 ) от БП1, где напряжение больше. После выравнивания напряжения ток перетекания уменьшается до нуля.
В реальности напряжение на выходе БП1 и БП2 разное. И поэтому рассматриваем работу такой связки учитывая дополнительные параметры показанные на рис 8 .
Известно, что каждый блок питания имеет свое внутреннее сопротивление Ri, а за счет системы стабилизации его величина существенно снижается. Практически Ri определяет КПД блока питания и желательно чтобы соотношение Rн/ Ri было максимальным. Поскольку ток нагрузки блока питания определяется суммой Ri и Rн, а как мы уже знаем Ri -> min, то можно считать, что он целиком определяется R н.
В связке двух параллельно включенных блоков питания нагружается только тот БП который имеет более высокое выходное напряжение. То есть I н = I 1 . Это будет продолжаться до тех пор пока выходное напряжение (за счет падения напряжения на Ri ) не начнет падать (система стабилизации не сможет его поддерживать, когда ток нагрузки достигнет максимального, в этом случае начнет расти внутреннее сопротивление нагруженного блока питания Ri. ). Второй БП будет до этого будет работать в режиме холостого хода.
Такой режим работы нельзя считать нормальным.
Кроме выравнивания выходного напряжения — известно другое решение проблемы, это включение последовательно с выходом каждого БП небольшого выравнивающего резистора, который как бы увеличивает его внутреннее сопротивление, в результате чего выходное напряжение падает и включается в работу блок питания имеющий меньшее напряжение. Причем их величина одинакова для обоих.
Величина этого сопротивления от 1% до 10% от R н и зависит от разницы выходных напряжений и мощности нагрузки.
Недостаток данного решения потери мощности в выравнивающих резисторах.
Но, для равномерной загрузки, требование максимального сближения U1 и U2 остается.
Заключение
В Интернет форумах множество публикаций посвященных параллельному включению и только единичные сообщения о фатальных результатах. эти единичные случаи возможны из-за скрытых неисправностей блоков питания или большой разницы выходных напряжений.
- Параллельное соединение выходных цепей блоков импульсных питания возможно. Но при этом для равномерной загрузки их выходные напряжения должны быть максимально близки. В случае невыполнение этого условия возможна перегрузка БП с большим напряжением.
- Параллельное включение отдельных электрохимических элементов питания недопустимо,
- Параллельное включение батарей электрохимических элементов питания возможно при условии применения защитных диодов в составе каждой батареи,
- Параллельное соединение фотоэлектрических элементов допустимо, но при этом надо учитывать что возможна перегрузка лучших элементов в группе (с наибольшим напряжением), а при большой разнице в выходном напряжении худший элемент может вообще не включаться в работу.
Обсуждения параллельного включения блоков питания компьютеров :
- Два блока питания в одном компьютере. http://hwtech.ru/forums/viewtopic.php?id=207
- Twin turbo — два БП в компьютере. http://www.casemods.ru/section17/item300/
- edwardass: Два блока питания в одном корпусе ? http://forum.ixbt.com/topic.cgi?id=49:8559
- Модификация блока питания. http://www.overclockers.ru/lab/15748.shtml
- Корпуса и блоки питания. http://forums.overclockers.ru/viewtopic.php?f=26&t=14083&start=960
- Можно ли запараллелить два блока питания? http://www.rom.by/forum/Mozhno_li_zaparallelit_dva_bloka_pitanija
октябрь 2010 -2012 гг.
А.Сорокин
Какой способ соединения источников позволяет увеличить напряжение
Словарь современного языка
Словарь современного языка
Тест на знание современных слов. Выберите тему!
- интернет 300 300 новых
- общение 167 167 новых
- компьютеры 112 112 новых
- жизнь 100 100 новых
- соцсети 100 100 новых
- общество 88 88 новых
- бизнес 85 85 новых
- игры 79 79 новых
- увлечения 78 78 новых
- мода 70 70 новых
- мемы 55 55 новых
- субкультуры 53 53 новых
- быт 52 52 новых
- технологии 43 43 новых
- развлечения 42 42 новых
- политика 37 37 новых
- реклама 35 35 новых
- спорт 33 33 новых
- термины 33 33 новых
- одежда 30 30 новых
- работа 29 29 новых
- девайсы 28 28 новых
- музыка 27 27 новых
- кино 25 25 новых
- косметика 25 25 новых
- аниме 24 24 новых
- красота 24 24 новых
- профессии 23 23 новых
- стили 21 21 новое
- фото 20 20 новых
- еда 19 19 новых
- форумы 19 19 новых
- футбол 19 19 новых
- фитнес 18 18 новых
- искусство 17 17 новых
- сми 17 17 новых
- обучение 15 15 новых
- рукоделие 15 15 новых
- фанаты 15 15 новых
- авто 14 14 новых
- аксессуары 14 14 новых
- дизайн 14 14 новых
- обувь 14 14 новых
- путешествия 14 14 новых
- отношения 13 13 новых
- техника 13 13 новых
- видео 12 12 новых
Просвещенные
- Konstantin Kolesnikov
- jekka_gypsy
- Sergey Evdokimov
- Anna Moskovskaya
- Fanni_khv
- Ксения Пшецукова
- Надя Бодрова
- Alexandra Kiseleva
- evgenij_borisovich
- Alyona Shadrina
Работа нескольких источников питания на общую нагрузку: возможные варианты и компромиссы
Существует множество причин, которые могут побудить разработчика к параллельному включению источников питания постоянного тока. Некоторые из них обусловлены экономическими и логистическими аспектами, другие направлены на обеспечение требуемого тока системы, уровня характеристик и надежности.
Если рассматривать вопрос с непроектной стороны, возможность параллельного включения источников питания может позволить использовать одну модель блока питания во всей номенклатуре выпускаемых изделий, как отдельно, так и в различных комбинациях. Это может упростить поиск комплектующих, увеличить объем закупок однотипных устройств и оптимизировать управление запасами.
С технической точки зрения обосновать необходимость параллельного включения источников питания, конечно же, сложнее. Во-первых, это может быть своеобразной «страховкой» на случай, если выяснится, что реальный ток, требуемый продукту, превышает планируемый. Такое может произойти, например, из-за отсутствия компонентов с более низким потреблением мощности, или же после дополнительных маркетинговых исследований, показавших необходимость добавления новых функций. Во-вторых, параллельное соединение может обеспечить избыточность N+1, и даже N+2 для защиты от одиночных отказов, или возможность горячей замены отказавшего источника без воздействия на систему. В-третьих, можно использовать известные, проверенные источники питания с хорошо изученными характеристиками и типоразмерами, чтобы снизить неопределенность и проектные риски. Наконец, это позволяет «перераспределять тепло» за счет дополнительной гибкости в физическом размещении преобразователей энергии, если одно более мощное устройство в ограниченном объеме рассеивает слишком много тепла.
Из гибкости и потенциальных преимуществ соединения нескольких источников вытекает очевидный вопрос: всякий ли блок питания без изменений, «как есть» может быть использован в параллельной конфигурации? Ответом будет «нет». Это зависит от конструкции источников, технологии соединения, а также от причин, побуждающих включать их параллельно.
На первый взгляд, самым очевидным и легким способом параллельного объединения источников будет простое соединение их выходов. Но в большинстве случаев это работать не будет, так как каждый блок питания имеет свою схему стабилизации выходного напряжения, которая не только будет стремиться восстановить это напряжение при изменениях нагрузки, но и попытается противодействовать контурам регулирования других источников.
Простое параллельное соединение традиционных источников питания с внутренним опорным напряжением и усилителем ошибки, сравнивающим это напряжение с выходным, не приведет к повышению выходной мощности всего массива. Различия в параметрах блоков питания всегда будут приводить к тому, что только один из них, с наибольшим относительно выходного опорным напряжением, будет стремиться отдавать весь ток в нагрузку, в то время как остальные не будут нагружены вовсе.
В этом случае, как только нагрузка превысит возможности этого «ведущего» источника питания, он может либо войдет в режим ограничения тока (который может быть, а может и не быть предусмотрен его конструкцией), либо будет интерпретировать перегрузку как аварийный режим, и отключится. В зависимости от типа источника, эта ситуация может привести к дисбалансу системы питания, особенно, если она возникает во время обычной работы устройства. В дальнейшем, в случае отключения источника из-за перегрузки, всю нагрузку примет на себя следующий источник с наибольшим опорным напряжением, и он точно также отключится. Это быстро приведет к обрушению всей шины питания.
Связка соединенных напрямую источников питания может функционировать нормально лишь в том случае, когда один источник работает в режиме стабилизации напряжения (CV – constant-voltage mode), а остальные – в режиме стабилизации тока (СС – constant-current mode) с чуть бóльшим выходным напряжением. Отметим, что далеко не во всех источниках питания предусмотрена возможность выбора выходного режима. Источники питания, на выходах которых установлено более высокое выходное напряжение, обеспечат постоянство выходного тока, а напряжение на выходе каждого из них будет снижаться до тех пор, пока не сравняется с напряжением источника CV. Нагрузка должна потреблять ток, достаточный для того, чтобы гарантировать, что источники, которые должны работать в режиме CC, будут оставаться в этом режиме. Следует обратить внимание, что использование двух режимов означает, что источники уже не являются строго идентичными, и тем самым одно из преимуществ параллельной конфигурации сводится на нет.
Прямое соединение становится практичным, если источники питания специально разработаны для поддержки такой топологии, или если имеется единый усилитель ошибки петли обратной связи, вырабатывающий сигнал рассогласования для всех остальных источников питания, чтобы позволить им распределить между собой отдаваемую в нагрузку мощность. Однако такой метод требует наличия «общей шины» для передачи сигналов управления от ведущего источника питания к ведомым.
Другой подход заключается в добавлении небольших балластных резисторов последовательно с выходом каждого источника питания (Рисунок 1), которые выравнивают распределение токов нагрузки между источниками в группе даже тогда, когда их схемы управления отслеживают разные выходные напряжения. Балластные резисторы несколько ухудшают качество стабилизации нагрузки, причем степень этого ухудшения зависит от величины разброса ошибок уставок, для компенсации которых используются резисторы. Однако эти балластные резисторы также рассеивают тепло, что ухудшает КПД системы.
Рисунок 1. | Один из подходов заключается в использовании относительно низкоомных балластных резисторов на выходе каждого источника питания, однако это приводит к повышенному тепловыделению и снижению общего КПД. |
Этот «ИЛИ» тот?
Казалось бы, «простое» решение дилеммы прямого подключения состоит в том, чтобы всего лишь использовать диод между каждым источником питания и общей точкой, объединяющей все источники. Такой метод (Рисунок 2) обычно называют диодным «ИЛИ». Диодное «ИЛИ» очень эффективно тогда, когда нужно исключить возможность протекания тока вне общей нагрузки, но, как правило, недостаточно для устранения ошибок распределения между источниками питания с независимыми усилителями ошибки, поскольку излом характеристики проводимости диода достаточно резок для того, чтобы параметрические различия в уставках по-прежнему оставались причиной значительного дисбаланса источников.
Рисунок 2. | В принципе, выходы нескольких источников питания могут быть объединены с помощью диодов, изолирующих источники друг от друга, но при такой конфигурации возникает множество проблем, связанных с балансировкой и распределением токов. |
Как правило, диодное «ИЛИ» требуется для работающих независимо источников питания, выходные токи которых могут быть как вытекающими, так и втекающими (работа в двух квадрантах). Эффект прямого параллельного соединения таких источников питания без использования диодов будет намного хуже, чем в случае одноквадрантных источников. В то время как одноквадрантные источники питания лишь теряют точность при подключении к общей нагрузке, двухквадрантные источники будут активно бороться за контроль над общим выходным напряжением. Это приведет к превышению токов, циркулирующих в группе источников питания, над током в нагрузке, и, возможно, станет причиной немедленной перегрузки одного или нескольких источников.
Кроме того, если диоды имеют отрицательный температурный коэффициент порога проводимости, они даже будут способствовать нарушению распределения токов в группе источников. Один из способов смягчения этой проблемы заключается в использовании выпрямителей с положительным температурным коэффициентом – на диодах Шоттки, или на полевых транзисторах, выполняющих функции диодов в схеме активного «ИЛИ», однако диоды могут снизить общий КПД за счет прямого падения напряжения, а активное «ИЛИ» может увеличить стоимость и сложность схемы.
В некоторых случаях диодное «ИЛИ» может способствовать повышению надежность на системном уровне. Особенно интересен случай, когда в одном из блоков питания происходит короткое замыкание выходного полевого транзистора или конденсатора, что может поставить под угрозу работу общей шины выходного напряжения. Диоды схемы «ИЛИ» быстро отсекут короткое замыкание от общей выходной шины и обеспечат устойчивость и надежность системы.
Кто здесь главный?
Чтобы надежно и предсказуемо функционировать в общей группе, источники питания, как правило, должны специально проектироваться для параллельной работы. Необходимы синхронизация при запуске, координация цепей защиты от неисправностей и стабильность контура обратной связи.
Для группы источников питания, соединенных параллельно с целью увеличения полезного тока нагрузки, требуется использование таких методов управления петлей обратной связи, которые учитывают совместную работу источников. Распространенной стратегией является включение источников питания без внутренних усилителей сигналов ошибки, когда вместо этого все источники объединяются в группу с общим входом управления, подключенным к одному усилителю ошибки. Этот усилитель регулирует выходное напряжение системы, а затем его сигнал обратной связи распределяется между всеми источниками питания в системе.
Основным преимуществом этой популярной стратегии управления является отличная стабилизация выходного напряжения. Кроме того, ошибки распределения уходят на второй план перед производственным разбросом коэффициентов усиления широтно-импульсных модуляторов преобразователей. С другой стороны, использование одного усилителя ошибки и однопроводной шины управления создает уязвимую для неисправностей точку, которая может стать источником проблем в некоторых высоконадежных системах. Кроме того, параметрические отклонения в модуляторе трудно контролировать, что вынуждает производителя к компромиссному решению в пользу управления распределением токов нагрузки.
В варианте с общей петлей регулирования ошибки распределения токов можно сделать минимальными, если жестко ограничить разброс параметров цепей управления источников. Во избежание перегрузки какого-либо источника в группе из-за больших ошибок распределения необходимо либо снизить расчетную нагрузку группы, либо использовать определенные меры противодействия. Для выравнивания ошибок распределения токов, обусловленных разбросом параметров цепей управления, может использоваться заводская регулировка для калибровки выходных ошибок (дорогостоящий метод), или добавление в каждый источник массива локального контура стабилизации тока (что увеличит сложность схемы и количество компонентов). Для измерения тока этих локальных петель, как правило, к источнику питания добавляют резистивный шунт.
Еще один проблемой, возникающей в случае группирования изолированных источников питания, имеющих собственные узлы управления с опорными уровнями на первичной стороне DC/DC преобразователя, является передача сигнала усилителя ошибки через изолирующий барьер между первичной и вторичной частями схемы. Использование изоляции часто увеличивает стоимость решения, отбирает существенную часть ценной площади печатной платы и, в зависимости от используемых для изоляции компонентов, может неблагоприятно влиять на надежность.
Вторая стратегия организации контура управления, позволяющая объединять источники в параллельные группы, основана на использовании сопротивлений силовых проводников в качестве балластных резисторов для метода, изображенного на Рисунке 1. При реализации технологии, называемой «droop-share» (распределенное снижение напряжения), каждый источник питания имеет свое опорное напряжение и интегрированный усилитель ошибки, но вслед за увеличением тока нагрузки опорное напряжение намеренно и линейно снижается на некоторую определенную величину.
Запараллеливание источников питания может оказывать негативное влияние на переходную характеристику и качество стабилизации выходного напряжения. В методе droop-share для распределения мощности между модулями в группе намеренно используется обратная характеристика регулирования. Из-за этого стабильность выходного напряжения группы droop-share, как правило, бывает хуже, чем у группы, созданной с одним традиционным усилителем ошибки. Если это нежелательно, для эффективной компенсации отрицательного наклона характеристики управления можно использовать внешний контур регулирования. Получающаяся погрешность статического регулирования идентична погрешности для случая традиционного усилителя ошибки, так как внешний контур сам по себе является интегратором ошибки.
Конструкцию системы питания можно упростить
Поставщики источников питания могут предпринять определенные шаги, облегчающие их параллельное соединение. Например, в свои модульные DC/DC преобразователи (DC/DC Converter Module – DCM) компания Vicor встроила цепи регулирования выходного напряжения с отрицательным наклоном нагрузочной кривой, благодаря которым при увеличении тока нагрузки внутренний стабилизатор может слегка уменьшать выходное напряжение. Это эффективно действует как небольшой балластный резистор, однако, без каких-либо реальных резисторов, и с несколькими дополнительными существенными отличиями (Рисунок 3).
Рисунок 3. | Выпускаемые Vicor преобразователи серии DCM сконструированы таким образом, чтобы для параллельного включения было достаточно просто соединить их выходы. Не нужны ни диоды, ни балластные резисторы, ни какие-либо другие элементы балансировки нагрузки. |
Во-первых, это иной способ реализации балластного резистора, не связанный с потерями энергии, поскольку при отсутствии физического резистора, соответственно, нет выделения тепла. Второе отличие касается динамической реакции, так как реальный резистор для частот до сотен килогерц может считаться бесконечно «широкополосным» элементом, вольтамперная характеристика которого остается неизменной благодаря отсутствию высокочастотных паразитных реактивных составляющих. Вследствие этого любое мгновенное изменение напряжения на резисторе приводит к немедленному соответствующему изменению тока.
В преобразователях DCM требуемая форма нагрузочной характеристики реализуется через дискретную модуляцию цифро-аналогового преобразователя, вырабатывающего опорное напряжение для усилителя ошибки. Расчет подходящего значения опорного напряжения основан, в первую очередь, на оценке величины выходного тока DCM и включает некоторое усреднение для снижения уровня шумов. Поэтому резистор, который эмулируется нагрузочной характеристикой DCM, ведет себя так, как если бы к нему был подключен параллельный конденсатор значительной емкости, и при взгляде на рисунки из технических описаний, иллюстрирующие отклик источника на скачок нагрузки, отчетливо просматривается результирующая RC-постоянная времени.
Тем не менее, такие выходные нагрузочные характеристики позволяют непосредственно соединять выходы нескольких DCM в параллель, несмотря на то, что каждый из них по-прежнему имеет свой собственный активный усилитель ошибки петли регулирования. Если активные сопротивления проводников между выходами источников и нагрузкой идентичны, регулировки выходных напряжений одинаковы, и все источники имеют одну и ту же температуру, то распределение токов нагрузки внутри группы DCM будет идеально ровным. Таким образом, соединенные параллельно DCM ведут себя как один DCM, но с бóльшим выходным током (Рисунок 4).
Рисунок 4. | При параллельном соединении источников DCM компании Vicor вся группа работает как один преобразователь. Кроме того, как видно из нагрузочной характеристики, в случае избыточного резервирования уровня N+1 относительно максимальной нагрузки группа продолжает нормально функционировать даже при отказе одного из преобразователей. |
Благодаря отрицательному температурному коэффициенту выходного напряжения, изменения температуры отдельных устройств в группе преобразователей семейства DCM не становятся источником проблем. Если один источник нагружен больше, чем другие, его температура повысится относительно остальных устройств группы, что, в свою очередь, приведет к уменьшению его выходного напряжения. Поскольку выходные напряжения остальных источников группы параллельных DCM согласованы с напряжением нагруженного DCM, их выходы, в соответствии с их нагрузочными характеристиками, будут увеличивать свои доли токов и возвращать систему обратно к равновесию.
Аналогичные подходы к решению проблем параллельного соединения DC/DC источников питания применимы как к преобразователям, существенно более мощным, чем выпускаемые Vicor устройства серии DCM, так и к интегральным источникам питания, предназначенным для намного меньших нагрузок. Например, выпускаемый Linear Technology трехамперный LDO регулятор LT3083 поддерживает параллельную работу с использованием балластных резисторов сопротивлением 10 мОм, включенных между выходом каждого регулятора и общей выходной шиной.
Параллельное соединение источников питания является привлекательной и жизнеспособной технологией, дающей такие преимущества, как сокращение объема складских запасов, унификация продуктов, дополнительный выходной ток и избыточное резервирование по схеме N+1. Однако это должно делаться с пониманием особенностей тех или иных технологий параллельного соединения, а также с четким представлением о структуре и работе контура обратной связи, который будет обеспечивать управление группой источников питания.
Ссылки
- «Application Note AN-030: Parallel DCMs,» Ugo Ghisla, Vicor Corp.
- «Back to Basics: What is Active ORing?,» Vicor Corp.
- «Learn to connect power supplies in parallel for higher current output,» Keysight Technologies.
- «Power Tip 27: Parallel power supplies with droop method,» Robert Kollman, Texas Instruments.
- «Application Note 140: Basic Concepts of Linear Regulator and Switching Mode Power Supplies,» Henry J. Zhang, Linear Technology Corp.
Материалы по теме
Соединение элементов питания и батарей
Источники напряжения обычно называют источниками питания. Для увеличения тока или напряжения, а может и того и другого источники питания (элементы, батареи) могут соединяться вместе. Существует три типа соединения элементов питания:
1. Последовательное соединение элементов.
2. Параллельное соединение элементов.
3. Последовательно-параллельное (смешанное) соединение элементов.
Последовательное соединение элементов.
При последовательном соединении элементов питания выделяются две схемы: последовательно-дополняющая и последовательно-препятствующая.
В последовательно-дополняющей схеме положительный вывод первого элемента питания соединяется с отрицательным выводом второго элемента питания; положительный вывод второго элемента питания соединяется с отрицательным выводом третьего элемента питания и т.д. (рисунок 3.11.)
Рисунок 3.11.Последовательное соединение элементов питания.
При таком соединении источников питания через все элементы будет течь одинаковый ток:
Индексы в обозначениях токов указывают на номера отдельных источников питания (элементов или батарей питания)
А полное напряжение при последовательном соединении равно сумме напряжений (ЭДС) отдельных элементов:
Еобщ = Е1 + Е2 + Е3.
При последовательно-препятствующем включении источников питания, они соединяются друг с другом одноименными выводами. Но на практике такая схема не применяется или применяется, но очень редко.
Параллельное соединение элементов.
При параллельном соединении элементов питания, их одноименные выводы соединяются вместе, то есть плюс к плюсу, минус к минусу (рис 3.12).
Рисунок 3.11.Параллельное соединение элементов питания.
В этом случае общий ток будет равен сумме токов каждого элемента:
Общее напряжение при параллельном включении источников питания будет равно напряжению каждого отдельного источника.
Еобщ = Е1 = Е2 = Е3.
Последовательно-параллельное соединение элементов напряжения.
Источники питания включают по последовательно-параллельной схеме для увеличения, как тока, так и напряжения. При этом основываются на том, что параллельное включение увеличивает силу тока, а последовательное увеличивает общее напряжение. На рисунке 3.13 показаны примеры последовательно-параллельных схем включения элементов питания.
Рисунок 3.11.Последовательно-параллельное соединение элементов питания.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!