Что такое шестнадцатеричная система счисления
Перейти к содержимому

Что такое шестнадцатеричная система счисления

  • автор:

home » Перевод чисел из десятичной системы в шестнадцатиричную

Двоичная система счисления — позиционная система счисления с основанием 2.

Шестнадцатеричная система счисления — позиционная система счисления по целочисленному основанию 16.

Десятичное число (положительное) Шестнадцатеричное число
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 A
11 B
12 C
13 D
14 E
15 F
16 10
32 20
64 40
128 80
256 100

Шестнадцатеричная система

Шестнадцатеричная система счисления (шестнадцатеричные числа) — позиционная система счисления по целочисленному основанию 16. Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 10 до 15.

Применение

Широко используется в низкоуровневом программировании и вообще в компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами. Такое использование началось с системы IBM/360, где вся документация использовала шестнадцатеричную систему, в то время как в документации других компьютерных систем того времени (даже с 8-битными символами, как, например, БЭСМ-6) использовали восьмеричную систему.

В стандарте Юникода номер символа принято записывать в шестнадцатеричном виде, используя не менее 4 цифр (при необходимости — с ведущими нулями).

Способы записи

В математике

В математике систему счисления принято писать в подстрочном знаке. Например, десятичное число 1443 можно записать как 144310 или как 5A316.

В языках программирования

В разных языках программирования для записи шестнадцатеричных чисел используют различный синтаксис:

  • В Ада и
  • В Си и языках схожего синтаксиса, например, в
  • В некоторых ассемблерах используют букву «h», которую ставят после числа. Например, «5A3h». При этом, если число начинается не с десятичной цифры, впереди ставится «0» (ноль): «0FFh» (25510)
  • Другие ассемблеры (AT&T, Motorola), а также Паскаль и некоторые версии Бэйсика используют префикс «$». Например, «$5A3».
  • Некоторые иные платформы, например ZX Spectrum в своих ассемблерах (MASM, TASM, ALASM, GENS и т.д.) использовали запись #5A3, обычно выровненную до одного или двух байт: #05A3.
  • Другие версии Бэйсика используют для указания шестнадцатеричных цифр сочетание «&h». Например, «&h5A3».
  • В Unix-подобных операционных системах (и многих языках программирования, имеющих корни в Unix/linux) непечатные символы при выводе/вводе кодируются как \xCC, где CC — шестнадцатеричный код символа.

Перевод чисел из одной системы счисления в другую

Перевод чисел из шестнадцатеричной системы в десятичную

Для перевода шестнадцатеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа.

Например, требуется перевести шестнадцатеричное число 5A3 в десятичное. В этом числе 3 цифры. В соответствии с вышеуказанным правилом представим его в виде суммы степеней с основанием 16:

5A316=5·16 2 +10·16 1 +3·16 0
=5·256+10·16+3·1=1280+160+3=144310

Перевод чисел из двоичной системы в шестнадцатеричную

Для перевода многозначного двоичного числа в шестнадцатеричную систему нужно разбить его на тетрады справа налево и заменить каждую тетраду соответствующей шестнадцатеричной цифрой.

101101000112=0101 1010 0011=5A316

Таблица перевода чисел

0hex = 0dec = 0oct 0 0 0 0
1hex = 1dec = 1oct 0 0 0 1
2hex = 2dec = 2oct 0 0 1 0
3hex = 3dec = 3oct 0 0 1 1
4hex = 4dec = 4oct 0 1 0 0
5hex = 5dec = 5oct 0 1 0 1
6hex = 6dec = 6oct 0 1 1 0
7hex = 7dec = 7oct 0 1 1 1
8hex = 8dec = 10oct 1 0 0 0
9hex = 9dec = 11oct 1 0 0 1
Ahex = 10dec = 12oct 1 0 1 0
Bhex = 11dec = 13oct 1 0 1 1
Chex = 12dec = 14oct 1 1 0 0
Dhex = 13dec = 15oct 1 1 0 1
Ehex = 14dec = 16oct 1 1 1 0
Fhex = 15dec = 17oct 1 1 1 1

См. также

  • Система счисления
  • Двоичные приставки
  • Шестнадцатеричный редактор

Ссылки

  • Шестнадцатеричные числа и операции с ними
  • Таблица порядков двоичных, шестнадцатеричных и десятичных чисел
  • Онлайн калькулятор для перевода чисел из одной системы счисления в другую

Wikimedia Foundation . 2010 .

  • Шестнадцатеричный редактор
  • Шестиконечная звезда

Полезное

Смотреть что такое «Шестнадцатеричная система» в других словарях:

  • Шестнадцатеричная система счисления — позиционная система счисления с основанием 16, в которой для записи чисел используются символы 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. См. также: Позиционные системы счисления Финансовый словарь Финам … Финансовый словарь
  • Шестнадцатеричная система счисления — Системы счисления в культуре Индо арабская система счисления Арабская Индийские Тамильская Бирманская Кхмерская Лаоская Монгольская Тайская Восточноазиатские системы счисления Китайская Японская Сучжоу Корейская Вьетнамская Счётные палочки… … Википедия
  • шестнадцатеричная система счисления — 01.01.09 шестнадцатеричная система счисления [ hexadecimal (noun); HEX]: Метод представления данных в системе счисления с основанием 16 с использованием цифр от 0 до 9 и букв от А до F. Примечание Используется как удобное краткое средство записи… … Словарь-справочник терминов нормативно-технической документации
  • Система счисления — Системы счисления в культуре Индо арабская система счисления Арабская Индийские Тамильская Бирманская Кхмерская Лаоская Монгольская Тайская Восточноазиатские системы счисления Китайская Японская Сучжоу Корейская Вьетнамская Счётные палочки… … Википедия
  • Шестнадцатиричная система счисления — Шестнадцатеричная система счисления (шестнадцатеричные числа) позиционная система счисления по целочисленному основанию 16. Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для… … Википедия
  • Шестнадцатиричная система исчисления — Шестнадцатеричная система счисления (шестнадцатеричные числа) позиционная система счисления по целочисленному основанию 16. Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для… … Википедия
  • Позиционная система счисления — Системы счисления в культуре Индо арабская система счисления Арабская Индийские Тамильская Бирманская Кхмерская Лаоская Монгольская Тайская Восточноазиатские системы счисления Китайская Японская Сучжоу Корейская Вьетнамская Счётные палочки… … Википедия
  • Позиционная система — счисления система счисления, в которой один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр … Википедия
  • Восьмиричная система счисления — Восьмеричная система счисления позиционная целочисленная система счисления с основанием 8. Для представления чисел в ней используются цифры 0 до 7. Восьмеричная система часто используется в областях, связанных с цифровыми устройствами.… … Википедия
  • Шестнадцатеричные числа — Шестнадцатеричная система счисления (шестнадцатеричные числа) позиционная система счисления по целочисленному основанию 16. Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для… … Википедия
  • Обратная связь: Техподдержка, Реклама на сайте
  • �� Путешествия

Экспорт словарей на сайты, сделанные на PHP,
WordPress, MODx.

  • Пометить текст и поделитьсяИскать в этом же словареИскать синонимы
  • Искать во всех словарях
  • Искать в переводах
  • Искать в ИнтернетеИскать в этой же категории

Шестнадцатеричная система счисления

Шестнадцатеричная система счисления (шестнадцатеричные числа) — позиционная система счисления по целочисленному основанию 16.

Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 1010 до 1510, то есть (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).

Применение

Широко используется в низкоуровневом программировании и компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами. Такое использование началось с системы IBM/360, где вся документация использовала шестнадцатеричную систему, в то время как в документации других компьютерных систем того времени (даже с 8-битными символами, как, например, PDP-11 или БЭСМ-6) использовали восьмеричную систему.

В стандарте Юникода номер символа принято записывать в шестнадцатеричном виде, используя не менее 4 цифр (при необходимости — с ведущими нулями).

Шестнадцатеричный цвет — запись трёх компонент цвета (R, G и B) в шестнадцатеричном виде.

Способы записи

В математике

В математике основание системы счисления принято указывать в десятичной системе в нижнем индексе. Например, десятичное число 1443 можно записать как 144310 или как 5A316.

В языках программирования

В разных языках программирования для записи шестнадцатеричных чисел используют различный синтаксис:

  • В Ада и VHDL такие числа указывают так: «16#5A3#».
  • В Си и языках схожего синтаксиса, например, в Java, используют префикс «0x». Например, «0x5A3».
  • В некоторых ассемблерах используют букву «h», которую ставят после числа. Например, «5A3h». При этом, если число начинается не с десятичной цифры, то для отличия от имён идентификаторов (например, констант) впереди ставится «0» (ноль): «0FFh» (25510)
  • Другие ассемблеры (AT&T, Motorola), а также Паскаль и некоторые версии Бейсика используют префикс «$». Например, «$5A3».
  • Некоторые иные платформы, например ZX Spectrum в своих ассемблерах (MASM, TASM, ALASM, GENS и т. д.) использовали запись #5A3, обычно выровненную до одного или двух байт: #05A3.
  • Другие версии Бейсика используют для указания шестнадцатеричных цифр сочетание «&h». Например, «&h5A3».
  • В Unix-подобных операционных системах (и многих языках программирования, имеющих корни в Unix/linux) непечатные символы при выводе/вводе кодируются как 0xCC, где CC — шестнадцатеричный код символа.

В электронных калькуляторах

Б3-34 и ему подобные используют «-», «L», «C», «Г», «E» « » (space) на их экране.

Перевод чисел из одной системы счисления в другую

Перевод чисел из шестнадцатеричной системы в десятичную

Для перевода шестнадцатеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа.

Например, требуется перевести шестнадцатеричное число 5A3 в десятичное. В этом числе 3 цифры. В соответствии с вышеуказанным правилом представим его в виде суммы степеней с основанием 16:

5A316 = 3·16 0 +10·16 1 +5·16 2
= 3·1+10·16+5·256 = 3+160+1280 = 144310

Перевод чисел из двоичной системы в шестнадцатеричную и наоборот

Для перевода многозначного двоичного числа в шестнадцатеричную систему нужно разбить его на тетрады справа налево и заменить каждую тетраду соответствующей шестнадцатеричной цифрой. Для перевода числа из шестнадцатеричной системы в двоичную нужно заменить каждую его цифру на соответствующую тетраду из нижеприведенной таблицы перевода.

0101101000112 = 0101 1010 0011 = 5A316

Таблица перевода чисел

0hex = 0dec = 0oct 0 0 0 0
1hex = 1dec = 1oct 0 0 0 1
2hex = 2dec = 2oct 0 0 1 0
3hex = 3dec = 3oct 0 0 1 1
4hex = 4dec = 4oct 0 1 0 0
5hex = 5dec = 5oct 0 1 0 1
6hex = 6dec = 6oct 0 1 1 0
7hex = 7dec = 7oct 0 1 1 1
8hex = 8dec = 10oct 1 0 0 0
9hex = 9dec = 11oct 1 0 0 1
Ahex = 10dec = 12oct 1 0 1 0
Bhex = 11dec = 13oct 1 0 1 1
Chex = 12dec = 14oct 1 1 0 0
Dhex = 13dec = 15oct 1 1 0 1
Ehex = 14dec = 16oct 1 1 1 0
Fhex = 15dec = 17oct 1 1 1 1

См. также

  • Двоичные приставки
  • Шестнадцатеричный редактор

Ссылки

  • Шестнадцатеричные числа и операции с ними
  • Таблица порядков двоичных, шестнадцатеричных и десятичных чисел
  • Системы счисления

Шестнадцатеричная система счисления

Шестнадцатеричная система счисления, так же как восьмеричная, широко используется в компьютерной науке из-за простоты перевода в нее двоичных чисел. В случае шестнадцатеричной записи числа получаются более компактными.

В качестве алфавита шестнадцатеричной системы счисления используются цифры от 0 до 9 и шесть первых латинских букв – A, B, C, D, E, F. При переводе в десятичную систему буквы заменяются числами 10, 11, 12, 13, 14, 15 соответственно.

При переводе двоичного числа в шестнадцатеричное, первое разбивается на группы по четыре разряда, начиная с конца. В случае, если количество разрядов не кратно четырем, первая четверка дописывается нулями впереди. Каждой четверке соответствует одноразрядное число шестнадцатеричной системы счисления.

Двоичное представление шестнадцатеричных чисел

10001100101 = 0100 1100 0101 = 4 C 5 = 4C5

В случае обратного перевода шестнадцатеричные цифры заменяются соответствующими четырехразрядными двоичными числами.

Перевод из шестнадцатеричной системы счисления в десятичную выполняется аналогично переводу из двоичной и восьмеричной. Только здесь в качестве основания степени выступает число 16, а цифры от A до F заменяются десятичными числами от 10 до 15.

4C5 = 4 * 16 2 + 12 * 16 1 + 5 * 16 0 = 4 * 256 + 192 + 5 = 1221

Максимальное двухразрядное число, которое можно получить с помощью шестнадцатеричной записи, – это число FF.

FF16 = 15 * 16 1 + 15 * 16 0 = 240 + 15 = 25510

В двоичном представлении FF будет выглядеть как восьмиразрядное число 11111111. Наименьшей рабочей ячейкой компьютерной памяти является байт, который состоит из 8-ми битов. Каждый бит может быть в двух состояниях – «включено» и «выключено». Одному из них сопоставляют ноль, другому – единицу.

Следовательно, в одном байте можно сохранить любое двоичное число в диапазоне от 00000000 до 11111111. В десятичном представлении это числа от 0 до 255. В шестнадцатеричном – от 0 до FF. С помощью шестнадцатеричной системы счисления удобно кратко, с помощью двух цифр-знаков, записывать значения байтов. Например, 0E или F5.

Несмотря на то, что 25510 – это максимальное значение, которое можно сохранить в байте, состояний у 8-ми битного байта 256, так как одно из них отводится под хранение нуля. Количество возможных состояний ячейки памяти вычисляется по формуле 2 n , где n – количество составляющих ее бит. В случае восьми бит получаем:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *