Представление о магнитном поле
Мы все знаем, что такое постоянные магниты. Магниты – это металлические тела, притягивающиеся к другим магнитам и к некоторым металлам. То, что располагается вокруг магнита и взаимодействует с окружающими предметами (притягивает или отталкивает некоторые из них), называется магнитным полем.
Источником любого магнитного поля являются движущиеся заряженные частицы. А направленное движение заряженных частиц называется электрическим током. То есть, любое магнитное поле вызывается исключительно электрическим током.
За направление электрического тока принимают направление движения положительно заряженных частиц. Если же движутся отрицательные заряды, то направление тока считается обратным движению таких зарядов. Представьте себе, что по кольцевой трубе течет вода. Но мы будем считать, что некий «ток» при этом движется в противоположном направлении. Электрический ток обозначается буквой I.
В металлах ток образуется движением электронов – отрицательно заряженных частиц. На рисунке ниже, электроны движутся по проводнику справа налево. Но считается, что электрический ток направлен слева направо.
Это произошло потому, что когда начали изучение электрические явления, не было известно, какими именно носителями чаще всего переносится ток.
Если мы посмотрим на этот проводник с левой стороны, так, чтобы ток шел «от нас», то магнитное поле этого тока будет направлено вокруг него по часовой стрелке.
Если рядом с этим проводником расположить компас, то его стрелка развернется перпендикулярно проводнику, параллельно «силовым линиям магнитного поля» — параллельно черной кольцевой стрелке на рисунке.
Если мы возьмем шарик, имеющий положительный заряд (имеющий дефицит электронов) и бросим его вперед, то вокруг этого шарика появится точно такое же кольцевое магнитное поле, закручивающееся вокруг него по часовой стрелке.
Ведь здесь тоже имеет место направленное движение заряда. А направленное движение зарядов есть электрический ток. Если есть ток, вокруг него должно быть магнитное поле.
Движущийся заряд (или множество зарядов – в случае электрического тока в проводнике) создает вокруг себя «тоннель» из магнитного поля. Стенки этого «тоннеля» «плотнее» вблизи движущего заряда. Чем дальше от движущегося заряда, тем слабее напряженность («сила») создаваемого им магнитного поля. Тем слабее реагирует на это поле стрелка компаса.
Закономерность распределение напряженности магнитного поля вокруг его источника такая же, как закономерность распределения электрического поля вокруг заряженного тела – она обратно пропорциональна квадрату расстояния до источника поля.
Если положительно заряженный шарик перемещается по кругу, то кольца магнитных полей, образующихся вокруг него по мере его движения, суммируются, и мы получим магнитное поле, направленное перпендикулярно плоскости, в которой перемещается заряд:
Магнитный «тоннель» вокруг заряда оказывается свернутым в кольцо и напоминает по форме тор (бублик).
Такой же эффект получается, если свернуть в кольцо проводник с током. Проводник с током, свернутый в многовитковую катушку называется электромагнитом. Вокруг катушки складываются магнитные поля движущихся в ней заряженных частиц — электронов.
А если заряженный шарик вращать вокруг его оси, то у него появится магнитное поле, как у Земли, направленное вдоль оси вращения. В данном случае током, вызывающим появление магнитного поля, является круговое движение заряда вокруг оси шарика – круговой электрический ток.
Здесь, по сути, происходит то же самое, что и при движении шарика по кольцевой орбите. Только радиус этой орбиты уменьшен до радиуса самого шарика.
Все сказанное выше справедливо и для шарика заряженного отрицательно, но его магнитное поле будет направлено в противоположную сторону.
Данный эффект был обнаружен в опытах Роуланда и Эйхенвальда. Эти господа регистрировали магнитные поля вблизи вращающихся заряженных дисков: рядом с этими дисками начинала отклоняться стрелка компаса. Направления магнитных полей в зависимости от знака заряда дисков и направления их вращения, показаны на рисунке:
При вращении незаряженного диска, магнитные поля не обнаруживались. Не было магнитных полей и вблизи неподвижных заряженных дисков.
Модель магнитного поля движущегося заряда
Чтобы запомнить направление магнитного поля движущегося положительного заряда, мы представим себя на его месте. Поднимем правую руку вверх, затем укажем ею направо, затем опустим ее вниз, затем укажем влево и вернем руку в исходное положение – вверх. Затем повторим это движение. Наша рука описывает круги по часовой стрелке. Теперь начнем движение вперед, продолжая вращать рукой. Движение нашего тела – аналог движения положительного заряда, а вращение руки по часовой стрелке – аналог магнитного поля заряда.
Теперь представьте себе, что вокруг нас находится тонкая и прочная эластичная паутина, похожая на струны пространства, которые мы рисовали, создавая модель электрического поля.
Когда мы движемся сквозь эту трехмерную «паутину», из-за вращения руки, она, деформируясь, смещается по часовой стрелке, образуя подобие спирали, словно бы наматываясь в катушку вокруг заряда.
Сзади, за нами, «паутина» восстанавливает свою правильную структуру. Примерно так можно представлять себе магнитное поле положительного заряда, движущегося прямо.
А теперь попробуйте двигаться не прямо вперед, а по кругу, например, поворачивая при ходьбе налево, при этом вращая рукой по часовой стрелке. Представьте себе, что вы движетесь через нечто, напоминающее желе. Из-за вращения вашей руки, внутри круга, по которому вы движетесь, «желе» будет смещаться вверх, образуя горб над центром круга. А под центром круга, образуется впадина из-за того, что часть желе сместилось вверх. Так можно представлять себе формирование северного (горб сверху) и южного (впадина снизу) полюсов при движении заряда по кольцу или его вращения.
Если при ходьбе вы будете поворачивать направо, то «горб» (северный полюс) сформируется снизу.
Аналогично можно сформировать представление о магнитном поле движущегося отрицательного заряда. Только вращать рукой нужно в противоположную сторону – против часовой стрелки. Соответственно, магнитное поле будет направлено в противоположную сторону. Просто каждый раз следите за тем, в какой сторону ваша рука выталкивает «желе».
Такая модель наглядно демонстрирует то, почему северный полюс одного магнита притягивается к южному полюсу другого магнита: «горб» одного из магнитов втягивается во «впадину» второго магнита.
И еще эта модель показывает, почему не существуют отдельных северных и южных полюсов магнитов, как бы мы их не разрезали – магнитное поле представляет собой вихревую (замкнутую) «деформацию пространства» вокруг траектории движущегося заряда.
Спин
У электрона было обнаружено магнитное поле, такое, какое у него должно быть в том случае, если бы он был шариком, вращающимся вокруг своей оси. Это магнитное поле назвали спином (от английского to spin — вращаться).
Кроме того, у электрона существует еще и орбитальный магнитный момент. Ведь электрон не только «вращается», но движется по орбите вокруг ядра атома. А движение заряженного тела порождает магнитное поле. Так как электрон заряжен отрицательно, магнитное поле, вызванное его движением по орбите, будет выглядеть так:
Если направление магнитного поля, вызванного движением электрона по орбите, совпадает с направлением магнитного поля самого электрона (его спином), эти поля складываются и усиливаются. Если же эти магнитные поля направлены в разные стороны, они вычитаются и ослабляют друг друга.
Кроме того, могут суммироваться или вычитаться друг из друга магнитные поля других электронов атома. Этим объясняется наличие или отсутствие магнетизма (реакции на внешнее магнитное поле или наличие собственного магнитного поля) некоторых веществ.
Эта статья — отрывок из книги об азах химии. Сама книга здесь:
sites.google.com/site/kontrudar13/himia
UPD: Материал предназначен, в первую очередь, для школьников средних классов. Возможно, Хабр не место для подобных вещей, Но где место? Нет его.
- Научно-популярное
- Физика
Источники магнитного поля
Издревле человеку были известны вещества, способные притягивать железные предметы. Около древнего греческого города Магнесия подобные минералы встречались в изобилии, эти вещества получили название магниты в честь данного города. Речь идет о постоянных магнитах.
Характеристики магнитного поля
Экспериментально легко понять, что так же как электрические заряды окружены электрическим полем, так в пространстве, окружающем токи и постоянные магниты имеется силовое поле, которое названо магнитным полем.
Присутствие магнитного поля можно обнаружить по его воздействию на постоянный магнит или проводник с током.
Отличительными чертами магнитного поля являются:
- Магнитные поля оказывают свое воздействие только на движущиеся в нем электрические заряды. Электрическое поле оказывает силовое действие на движущиеся в нем и неподвижные заряды.
- Характер действия магнитного поля зависит от формы проводника с током, расположения этого проводника в магнитном поле и направления текущего в проводнике тока.
- Для изучения магнитного поля применяют рамку с током, обладающую малыми размерами в сравнении с расстоянием до источника магнитного поля.
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты
Замечание 1
Рамка с током – это замкнутый плоский контур, по которому течет ток. Ориентацию рамки с током характеризует нормаль к контуру. Положительным направлением нормали считают направление, которое связывает с током правило правого винта.
Определение 1
Силовое поле, которое создают постоянные магниты и постоянные токи, называют постоянным магнитным полем.
Эксперименты Эрстеда
В 1820 году Эрстед доказал, что магнитные поле, помимо магнитов могут создавать электрические токи.
История открытия магнитного поля Эрстедом не лишена интереса. Ученый на лекции проводил эксперименты, которые должны были продемонстрировать нагрев проводников, если сквозь него проходит электрический ток. Студент, присутствовавший на лекции, сказал преподавателю о том, что в то время, когда он замыкает цепь, стрелка компаса, лежащего на столе, отклоняется от положения равновесия. Эрстед с большим вниманием отнесся к этому явлению и детально его изучил. В итоге он понял, что вокруг электрических токов возникает силовое поле, которое в полной мере аналогично полям, которые создают вокруг себя постоянные магниты.
«Источники магнитного поля»
Помощь эксперта по теме работы
Решение задач от ИИ за 2 минуты
Помощь с рефератом от нейросети
Постоянный электрический ток – источник постоянного магнитного поля
На сегодняшний день достоверно установлено, что источником постоянного магнитного поля служит постоянный электрический ток.
Может возникнуть вопрос, что служит источником магнитного поля у постоянных магнитов, и нет ли противоречия со сказанным выше?
Магнитное поле постоянных магнитов тоже создают токи. Это микроскопические замкнутые молекулярные токи и собственные магнитные моменты микрочастиц.
Магнитное поле стоит исследовать в отдельности от электрического поля, в том случае, если это поле создано постоянными во времени электрическими токами.
Замечание 2
В веществах, магнитное поле внешних электрических токов складывается с магнитными полями, которые создаются молекулярными токами.
Источники переменного магнитного поля
Переменные электрические токи порождают переменные магнитные поля. В этом случае магнитное поле невозможно рассматривать в отдельности от электрического поля. Изменяющиеся электрические токи являются источником переменного магнитного поля. Это поле в свою очередь становится источником переменного электрического поля. Вновь созданное переменное электрическое поле порождает новое переменное магнитное поле. Как результат, мы имеем электромагнитное поле, в котором электрическую и магнитную компоненты невозможно отделить друг от друга, исследование магнитного поля в таком случае становится принципиально невозможным от электрического.
Определение 2
Магнитным полем называют особую разновидность материи, при помощи которой реализуется силовое действие на перемещающиеся электрические заряды, находящиеся в нем, и другие тела имеющие магнитный момент. Магнитное поле – компонент электромагнитного поля.
Количественные и качественные характеристики магнитного поля
Поместим малую рамку с током в магнитное поле. Экспериментально установим, что в этом поле на рамку действует момент силы $M$, который зависит от ряда параметров, и от положения рамки в поле. Наибольшая величина момента силы ( $M_$) связана с магнитным полем, в котором она локализована и от параметров самого контура (силы тока $I$, текущего в нем, его площади ($S$ )):
$M_\sim IS=p_\left( 1 \right)$
где $p_m$ – магнитный момент контура с током. Магнитный момент — это характеристика контура с током и большого числа элементарных частиц, который определяет их поведение в магнитном поле.
Силовой характеристикой магнитного поля является вектор магнитной индукции ($\vec)$. Магнитную индукцию поля в точке можно определить как отношение наибольшего вращающего момента, который оказывает воздействие на виток с током в магнитном поле, и магнитного момента рассматриваемого витка:
Направление вектора магнитной индукции такое же, как у вектора магнитного момента ($\vec
_$) при устойчивом положении равновесия контура.
Магнитное поле можно изображать при помощи линий магнитной индукции. Касательные к линиям магнитной индукции указывают направление B ⃗. Количество силовых линий поля, которые приходятся на единичную площадь, нормальную к линиям магнитной индукции, равно модулю $\vec$. Линии магнитной индукции замкнуты (без конца и начала).
Магнитные поля являются вихревыми. Это означает, что циркуляция вектора $\vec$ вдоль любой линии магнитной индукции отлична от нуля:
$\oint dl\ne 0\left( 3 \right).> $
Величина магнитной индукции поля при одном и том же токе и прочих равных условиях в разных веществах будет различаться.
Магнитное поле можно описывать при помощи вектора напряженности ($\vec$). Если рассматриваемое вещество является однородным и магнитоизотропным, то
$\vec=\mu \mu_\vec\left( 4 \right)$
где $\mu_$ – магнитная постоянная; $\mu$ – магнитная проницаемость вещества.
Замечание 3
Магнитная проницаемость (μ) показывает, во сколько раз магнитное поле макротоков H увеличивается из-за наличия микротоков вещества.
Аналогии между характеристиками электрического и магнитного полей:
- Аналогом вектора напряженности электрического поля ($\vec$) служит вектор магнитной индукции соответствующего поля ($\vec$).
- Вектору диэлектрического смещения ($\vec$) электрического поля соответствует вектор напряженности магнитного поля ($\vec$).
Что является источником магнитного поля?
Магнитное поле формируется изменяющимся во времени электрическим полем. По этому источником магнитного поля могут служить любые предметы, имеющие в себе способность перемещать свободные электроны. Это могут быть как различные источники электроэнергии и их проводники. Так и живые существа, в том числе одноклеточные. Везде где есть движение электронов — а это в свою очередь составляющая атомов, будет присутствовать магнитное поле. То есть практически излучает его всё.Как живое так и не живое. Вся разница лишь в мощности и виде этих полей.
Остальные ответы
Как ни банально — магнит. Также проводник под напряжением.
В общем, необходимое условие существования магнитного поля — ДВИЖУЩИЕСЯ заряды.
А еще электричество.
Магнитное поле формируется изменяющимся во времени электрическим полем.
Изменяющееся во времени электрическое поле может создаваться током заряженных частиц, либо магнитными моментами электронов в атомах (постоянные магниты).
Магнитное поле
Магни́тное по́ле, магнитная составляющая электромагнитного поля ; физическое поле , оказывающее механическое силовое воздействие на движущиеся электрические заряды , на проводники , по которым течёт электрический ток , на постоянные магниты и другие физические объекты, обладающие магнитным моментом . Изменяющееся во времени магнитное поле создаёт переменное электрическое поле , которое, в свою очередь, создаёт переменное магнитное поле, что обеспечивает существование электромагнитных волн , в которых переменные электрические и магнитные поля взаимно поддерживают друг друга.
Термин «магнитное поле» ввёл в 1845 г. М. Фарадей , автор концепции физического поля – ключевого понятия современной физики, являющегося, по мнению А. Эйнштейна , самым важным физическим открытием со времён создания И. Ньютоном основ классической механики .
Силовой характеристикой магнитного поля является вектор магнитной индукции B , \boldsymbol, B , с помощью которого определяются механические силы и вращательные моменты сил, действующие со стороны магнитного поля на движущиеся заряды, токи и тела, обладающие магнитным моментом. Магнитное поле также характеризуется вектором напряжённости магнитного поля H ; \boldsymbol; H ; индукция и напряжённость магнитного поля, находящегося в изотропной среде, связаны выражением: H = B μ 0 μ , \boldsymbol = \frac<\boldsymbol><\mu_0 \mu>, H = μ 0 μ B , где μ \mu μ – магнитная проницаемость среды, μ 0 \mu_0 μ 0 – магнитная постоянная .
Источниками магнитного поля являются проводники с током, движущиеся заряды, физические объекты и тела, обладающие магнитным моментом . Для измерения характеристик магнитного поля используют различные магнитометры .
В технических приложениях магнитные поля по величине магнитной индукции B B B подразделяют на слабые (до 0,05 Тл), средние (0,05–4 Тл), сильные (4–100 Тл) и сверхсильные (свыше 100 Тл). Слабые и средние магнитные поля широко используются в радиотехнике и электронике , электротехнике и электроэнергетике . Их получают с помощью постоянных магнитов и электромагнитов (в том числе сверхпроводящих ).
Сильные магнитные поля используются в мощных электротехнических и электрофизических установках, в том числе в ускорителях заряженных частиц , в разрабатываемых энергетических установках управляемого термоядерного синтеза (проект ITER, International Termonuclear Energy Reactor). Для получения постоянного сильного магнитного поля (до 20–30 Тл) применяют сверхпроводящие соленоиды с дополнительным теплоотводом. Более сильные магнитные поля (до 160 Тл) удаётся получать только в течение коротких промежутков времени с помощью импульсных соленоидов, через которые пропускается мощный разрядный ток короткого замыкания , или с помощью магнитокумулятивных (взрывомагнитных) генераторов (до 1 0 3 10^3 1 0 3 Тл), в которых начальное магнитное поле очень быстро сжимается внутри проводящей оболочки, многократно возрастая в силу сохранения магнитного потока Φ = B S \Phi = \boldsymbol Φ = BS при взрывном уменьшении площади поперечного сечения S S S проводящей оболочки, заполненной магнитным полем.
Наблюдаемые природные магнитные поля имеют разные величины: магнитное поле Земли на её поверхности составляет около 5 ⋅ 1 0 – 5 5 \cdot 10^ 5 ⋅ 1 0 –5 Тл, магнитное поле Юпитера – порядка
1 0 – 3 10^ 1 0 –3 Тл, магнитное поле внутри солнечных пятен составляет доли Тл, отдельные звёзды обладают магнитным полем с индукцией порядка нескольких Тл. Наибольшими магнитными полями обладают звёзды, находящиеся на конечном этапе своей эволюции, когда их размеры значительно уменьшаются (магнитокумулятивный механизм усиления магнитного поля). У белых карликов наблюдаются магнитные поля порядка 1 0 3 10^3 1 0 3 Тл, у нейтронных звёзд – порядка 1 0 7 10^7 1 0 7 Тл; у четырёх нейтронных звёзд (трёх в нашей Галактике и одной в её спутнике – Большом Магеллановом Облаке ) обнаружены магнитные поля порядка 1 0 11 10^ 1 0 11 Тл.
Опубликовано 20 января 2023 г. в 19:36 (GMT+3). Последнее обновление 20 января 2023 г. в 19:36 (GMT+3). Связаться с редакцией